Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aitkaliyeva, Assel

  • Google
  • 3
  • 12
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Compositional Effects of Additively Manufactured Refractory High-Entropy Alloys under High-Energy Helium Irradiation20citations
  • 2022Photo-exfoliation of MoS<sub>2</sub> quantum dots from nanosheets: an in situ transmission electron microscopy study5citations
  • 2021Thermal Stability and Radiation Tolerance of Lanthanide-Doped Cerium Oxide Nanocubes5citations

Places of action

Chart of shared publication
Kotula, Paul G.
1 / 4 shared
Lang, Eric
2 / 6 shared
Wang, Yongqiang
1 / 4 shared
Kustas, Andrew B.
1 / 4 shared
Rodriguez, Sal
1 / 1 shared
Barr, Christopher M.
1 / 1 shared
Bischoff, Benjamin
1 / 4 shared
Hattar, Khalid
1 / 6 shared
Guerrero, Fernando
1 / 1 shared
Reuel, Paris C.
1 / 1 shared
Lu, Ping
1 / 6 shared
Boyle, Timothy
1 / 1 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Kotula, Paul G.
  • Lang, Eric
  • Wang, Yongqiang
  • Kustas, Andrew B.
  • Rodriguez, Sal
  • Barr, Christopher M.
  • Bischoff, Benjamin
  • Hattar, Khalid
  • Guerrero, Fernando
  • Reuel, Paris C.
  • Lu, Ping
  • Boyle, Timothy
OrganizationsLocationPeople

article

Thermal Stability and Radiation Tolerance of Lanthanide-Doped Cerium Oxide Nanocubes

  • Guerrero, Fernando
  • Reuel, Paris C.
  • Aitkaliyeva, Assel
  • Lu, Ping
  • Boyle, Timothy
  • Lang, Eric
Abstract

<jats:p>The thermal and radiation stability of free-standing ceramic nanoparticles that are under consideration as potential fillers for the improved thermal and radiation stability of polymeric matrices were investigated by a set of transmission electron microscopy (TEM) studies. A series of lanthanide-doped ceria (Ln:CeOx; Ln = Nd, Er, Eu, Lu) nanocubes/nanoparticles was characterized as synthesized prior to inclusion into the polymers. The Ln:CeOx were synthesized from different solution precipitation (oleylamine (ON), hexamethylenetetramine (HMTA) and solvothermal (t-butylamine (TBA)) routes. The dopants were selected to explore the impact that the cation has on the final properties of the resultant nanoparticles. The baseline CeOx and the subsequent Ln:CeOx particles were isolated as: (i) ON-Ce (not applicable), Nd (34.2 nm), Er (27.8 nm), Eu (42.4 nm), and Lu (287.4 nm); (ii) HMTA-Ce (5.8 nm), Nd (6.6 nm), Er (370.0 nm), Eu (340.6 nm), and Lu (287.4 nm); and (iii) TBA-Ce (4.1 nm), Nd (5.0 nm), Er (3.8 nm), Eu (7.3 nm), and Lu (3.8 nm). The resulting Ln:CeOx nanomaterials were characterized using a variety of analytical tools, including: X-ray fluorescence (XRF), powder X-ray diffraction (pXRD), TEM with selected area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (EDS) for nanoscale elemental mapping. From these samples, the Eu:CeOx (ON, HMTA, and TBA) series were selected for stability studies due to the uniformity of the nanocubes. Through the focus on the nanoparticle properties, the thermal and radiation stability of these nanocubes were determined through in situ TEM heating and ex situ TEM irradiation. These results were coupled with data analysis to calculate the changes in size and aerial density. The particles were generally found to exhibit strong thermal stability but underwent amorphization as a result of heavy ion irradiation at high fluences.</jats:p>

Topics
  • nanoparticle
  • density
  • polymer
  • inclusion
  • electron diffraction
  • powder X-ray diffraction
  • transmission electron microscopy
  • precipitation
  • Energy-dispersive X-ray spectroscopy
  • ceramic
  • Cerium
  • X-ray fluorescence spectroscopy