People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Matsushita, Yoshitaka
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Enhanced High-Temperature Thermoelectric Performance of Yb 4 Sb 3 via Ce/Bi Co-doping and Metallic Contact Deposition for Device Integrationcitations
- 2022Reentrant structural and optical properties of organic-inorganic hybrid metal cluster compound ((n-C4H9)(4)N)(2)[(Mo6Br8Br6a)-Br-i]citations
- 2022Reentrant structural and optical properties of organic-inorganic hybrid metal cluster compound ((n-C4H9)(4)N)(2)[(Mo6Bri8Br6a)]citations
- 2021Redetermination of the crystal structure of RhPb<sub>2</sub> from single-crystal X-ray diffraction data, revealing a rhodium deficiencycitations
- 2021Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legscitations
- 2021Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legscitations
- 2021Evolution of gradient structured layer on AZ91D magnesium alloy and its corrosion behaviourcitations
- 2020Crystal structure and metallization mechanism of the π-radical metal TEDcitations
Places of action
Organizations | Location | People |
---|
article
Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legs
Abstract
<jats:p>CrSi2 is a promising thermoelectric material constituted of non-toxic and earth abundant elements that offer good perspectives for the mass production of inexpensive and reliable thermoelectric modules for waste heat recovery. Realization of robust metallic contacts with low electrical and thermal resistances on thermoelectric materials is crucial to maximize the conversion efficiency of such a device. In this article, the metallization of an undoped CrSi2 with Ti and Nb using a conventional Spark Plasma Sintering process is explored and discussed. These contact metals were selected because they have compatible thermal expansion coefficients with those of CrSi2, which were determined in this study by X-ray Diffraction in the temperature range 299–899 K. Ti was found to be a promising contact metal offering both strong adhesion on CrSi2 and negligible electrical contact resistance (<1 μΩ cm2). However, metallization with Nb resulted in the formation of cracks caused by large internal stress inside the sample during the fabrication process and the diffusion of Si in the metallic layer. A maximum conversion efficiency of 0.3% was measured for a sandwiched Ti/CrSi2/Ti thermoelectric leg placed inside a thermal gradient of 427 K. The preliminary results obtained and discussed in this article on a relatively simple case study aim to initiate the development of more reliable and efficient CrSi2 thermoelectric legs with an optimized design.</jats:p>