People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abdo, Hany S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Investigating the Mechanical Properties of Annealed 3D-Printed PLA–Date Pits Compositecitations
- 2023Adaptive Neuro-Fuzzy-Based Models for Predicting the Tribological Properties of 3D-Printed PLA Green Composites Used for Biomedical Applicationscitations
- 2023Investigation of the Mechanical and Tribological Behavior of Epoxy-Based Hybrid Compositecitations
- 2023Hydroxyapatite–Clay Composite for Bone Tissue Engineering: Effective Utilization of Prawn Exoskeleton Biowastecitations
- 2023Ecofriendly Biochar as a Low-Cost Solid Lubricating Filler for LDPE Sustainable Biocomposites: Thermal, Mechanical, and Tribological Characterizationcitations
- 2023Casting light on the tribological properties of paraffin-based HDPE enriched with graphene nano-additives: an experimental investigationcitations
- 2023Effect of Synthesized Titanium Dioxide Nanofibers Weight Fraction on the Tribological Characteristics of Magnesium Nanocomposites Used in Biomedical Applicationscitations
- 2022Mechanical Alloying of Ball-Milled Cu–Ti–B Elemental Powder with the In Situ Formation of Titanium Diboridecitations
- 2022Comparative Study into Microstructural and Mechanical Characterization of HVOF-WC-Based Coatingscitations
- 2022Study on the Microstructure of Vanadium-Modified Tungsten High-Speed Steel-Coded SAE-AISI T1 Steelcitations
- 2021Electrochemical Corrosion Behavior of Laser Welded 2205 Duplex Stainless-Steel in Artificial Seawater Environment under Different Acidity and Alkalinity Conditionscitations
- 2021Mitigating Corrosion Effects of Ti-48Al-2Cr-2Nb Alloy Fabricated via Electron Beam Melting (EBM) Technique by Regulating the Immersion Conditionscitations
- 2021Electrochemical Behavior of Inductively Sintered Al/TiO2 Nanocomposites Reinforced by Electrospun Ceramic Nanofiberscitations
- 2020The Cyclic Oxidation and Hardness Characteristics of Thermally Exposed Titanium Prepared by Inductive Sintering-Assisted Powder Metallurgycitations
- 2020Influence of Extrusion Temperature on the Corrosion Behavior in Sodium Chloride Solution of Solid State Recycled Aluminum Alloy 6061 Chipscitations
- 2020Regulating Mechanical Properties of Al/SiC by Utilizing Different Ball Milling Speedscitations
- 2017Effect of Nickel Content on the Corrosion Resistance of Iron-Nickel Alloys in Concentrated Hydrochloric Acid Pickling Solutionscitations
- 2015Corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquidscitations
Places of action
Organizations | Location | People |
---|
article
Mitigating Corrosion Effects of Ti-48Al-2Cr-2Nb Alloy Fabricated via Electron Beam Melting (EBM) Technique by Regulating the Immersion Conditions
Abstract
<jats:p>The corrosion behavior of newly fabricated γ-TiAl alloy was studied using electrochemical impedance spectroscopy (EIS) and cyclic potentiodynamic polarization (CPP) techniques. The γ-TiAl alloy was produced from powder with compositions of Ti-48Al-2Cr-2Nb processed using electron beam melting (EBM) technique. The corrosion behavior of the bulk alloy was investigated in 1 M HCl solution for different immersion times and temperatures. The experimental results suggest that the fabricated alloy exhibits good resistance to corrosion in acid solution at room temperature. The results also indicate that with an increase in immersion time and solution temperature, the corrosion potential (Ecorr) shifts to a higher positive value, resulting in an increase in corrosion current (jcorr) and consequently a decrease in the corrosion resistance (Rp) of the alloy.</jats:p>