People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tamašauskaitė-Tamašiūnaitė, Loreta
Center for Physical Sciences and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024The Dependence of NiMo/Cu Catalyst Composition on Its Catalytic Activity in Sodium Borohydride Hydrolysis Reactionscitations
- 2024Hydrogen and Oxygen Evolution on Flexible Catalysts Based on Nickel–Iron Coatings
- 2024Electrolessly Deposited Cobalt–Phosphorus Coatings for Efficient Hydrogen and Oxygen Evolution Reactions
- 2023Investigation of Hydrogen and Oxygen Evolution on Cobalt-Nanoparticles-Supported Graphitic Carbon Nitridecitations
- 2023Three-dimensional Au(NiMo)/Ti catalysts for efficient oxygen evolution reaction
- 2023Hydrogen production on CoFe, CoFeMn and CoFeMo coatings deposited on Ni foam via electroless metal platingcitations
- 2023Non-Precious Metals Catalysts for Hydrogen Generationcitations
- 2022Three-Dimensional Au(NiMo)/Ti Catalysts for Efficient Hydrogen Evolution Reactioncitations
- 2022Comparison of the Activity of 3D Binary or Ternary Cobalt Coatings for Hydrogen and Oxygen Evolution Reactionscitations
- 2021One-Pot Microwave-Assisted Synthesis of Graphene-Supported PtCoM (M = Mn, Ru, Mo) Catalysts for Low-Temperature Fuel Cellscitations
- 2021Synthesis of Carbon-Supported MnO2 Nanocomposites for Supercapacitors Applicationcitations
- 2020Investigation of Glucose Oxidation on Gold Nanocrystallites Modified Cobalt and Cobalt-Boron Coatings
- 2020Carbon supported manganese(IV)–cobalt(II/III) oxides nanoparticles for high-performance electrochemical supercapacitors
- 2020Bimetallic Co-Based (CoM, M = Mo, Fe, Mn) Coatings for High-Efficiency Water Splittingcitations
- 2020Investigation of stability of gold nanoparticles modified zinc–cobalt coating in an alkaline sodium borohydride solutioncitations
- 2020Investigation of electro-oxidation of glucose at gold nanoparticles/carbon composites prepared in the presence of halide ionscitations
- 2020Hydrogen Generation from an Alkaline NaBH<sub>4</sub> Solution Using Different Cobalt Catalysts
- 2020Surfactant-assisted microwave synthesis of carbon supported MnO2 nanocomposites and their application for electrochemical supercapacitorscitations
- 2019Investigation of glucose electro-oxidation on Co and CoB alloy coatings modified with Au nanoparticlescitations
- 2019Comparison of electrocatalytic activity for glucose electrooxidation of gold nanoparticles fabricated by different methodscitations
- 2016Platinum-Niobium(V) Oxide/Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation
- 2014Electroless Co-B-P-W Deposition Using DMAB as Reducing Agent
Places of action
Organizations | Location | People |
---|
article
Synthesis of Carbon-Supported MnO2 Nanocomposites for Supercapacitors Application
Abstract
<jats:p>In this study, carbon-supported MnO2 nanocomposites have been prepared using the microwave-assisted heating method followed by two different approaches. The MnO2/C nanocomposite, labeled as sample S1, was prepared directly by the microwave-assisted synthesis of mixed KMnO4 and carbon powder components. Meanwhile, the other MnO2/C nanocomposite sample labeled as S2 was prepared indirectly via a two-step procedure that involves the microwave-assisted synthesis of mixed KMnO4 and MnSO4 components to generate MnO2 and subsequent secondary microwave heating of synthesized MnO2 species coupled with graphite powder. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectroscopy have been used for characterization of MnO2/C nanocomposites morphology, structure, and composition. The electrochemical performance of nanocomposites has been investigated using cyclic voltammetry and galvanostatic charge/discharge measurements in a 1 M Na2SO4 solution. The MnO2/C nanocomposite, prepared indirectly via a two-step procedure, displays substantially enhanced electrochemical characteristics. The high specific capacitance of 980.7 F g−1 has been achieved from cyclic voltammetry measurements, whereas specific capacitance of 949.3 F g−1 at 1 A g−1 has been obtained from galvanostatic charge/discharge test for sample S2. In addition, the specific capacitance retention was 93% after 100 cycles at 20 A g−1, indicating good electrochemical stability.</jats:p>