Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ramirez-Morales, Maria Antonieta

  • Google
  • 1
  • 5
  • 27

University of Salento

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Characterization of Silver Nanoparticles Obtained by a Green Route and Their Evaluation in the Bacterium of Pseudomonas aeruginosa27citations

Places of action

Chart of shared publication
Contreras, Rocio Alejandra Silva
1 / 1 shared
Macías, Juan H.
1 / 1 shared
Guerrero, Karla Paola Sánchez
1 / 1 shared
Martinez, Juan Carlos
1 / 2 shared
Cerritos, Raúl Carrera
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Contreras, Rocio Alejandra Silva
  • Macías, Juan H.
  • Guerrero, Karla Paola Sánchez
  • Martinez, Juan Carlos
  • Cerritos, Raúl Carrera
OrganizationsLocationPeople

article

Characterization of Silver Nanoparticles Obtained by a Green Route and Their Evaluation in the Bacterium of Pseudomonas aeruginosa

  • Contreras, Rocio Alejandra Silva
  • Macías, Juan H.
  • Guerrero, Karla Paola Sánchez
  • Ramirez-Morales, Maria Antonieta
  • Martinez, Juan Carlos
  • Cerritos, Raúl Carrera
Abstract

<jats:p>Metal nanoparticles are widely used in different areas such as biotechnology and biomedicine, for example in drug delivery, imaging and control of bacterial growth. The antimicrobial effect of silver has been identified as an alternative approach to the increasing bacterial resistance to antibiotics. Silver nanoparticles were synthesized by the green route using the Geranium extract as a reducing agent. The characterization was carried out by the techniques of UV-Vis spectrophotometry, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray emitted photoelectron spectroscopy (XPS) and X-ray diffraction. Nanoparticle diameters between 15 and 50 nm were obtained and the interplanar spaces calculated from the electron diffraction pattern corresponding to a mixture of silver with 4H and FCC structures. To determine the minimum inhibitory concentration of silver nanoparticles (AgNPs) on the Pseudomonas aeruginosa bacteria (ATCC-27853), different concentrations of colloidal solution 0.36, 0.18, 0.09 and 0.05 μg/mL were evaluated as a function of the incubation time, measuring the inhibition halo and colony forming unit (CFU) during 0, 2 and 4 h of incubation. The minimum inhibitory AgNPs concentration (MIC) is 0.36 μg/mL at 0 h while the concentration of 0.18 μg/mL presents a total inhibition of the bacterium after 2 h. For the rest of the dilutions, gradual inhibitions as a function of time were observed. We evaluate the antibacterial effect of silver nanoparticles obtained by a green methodology in Pseudomonas aeruginosa bacteria. Finally, the colloidal nanoparticle solution can be an antibacterial alternative for different biomedical approaches.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • silver
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • electron diffraction
  • transmission electron microscopy
  • forming
  • spectrophotometry