People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Löbel, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Non-Metallic Alloying Constituents to Develop a Wear-Resistant CrFeNi-BSiC High-Entropy Alloy for Surface Protective Coatings by Thermal Spraying and High-Speed Laser Metal Depositioncitations
- 2022Strain‐Rate Sensitive Deformation Behavior under Tension and Compression of Al0.3CrFeCoNiMo0.2citations
- 2022Microstructure and Corrosion Properties of AlCrFeCoNi High-Entropy Alloy Coatings Prepared by HVAF and HVOFcitations
- 2021Boriding of Laser-Clad Inconel 718 Coatings for Enhanced Wear Resistancecitations
- 2020Precipitation Hardening of the HVOF Sprayed Single-Phase High-Entropy Alloy CrFeCoNicitations
- 2020Wear and Corrosion Behaviour of Supersaturated Surface Layers in the High-Entropy Alloy Systems CrMnFeCoNi and CrFeCoNicitations
- 2020Designing (Ultra)Fine-Grained High-Entropy Alloys by Spark Plasma Sintering and Equal-Channel Angular Pressingcitations
- 2019High-Temperature Wear Behaviour of Spark Plasma Sintered AlCoCrFeNiTi0.5 High-Entropy Alloycitations
- 2018Hardening of HVOF-Sprayed Austenitic Stainless-Steel Coatings by Gas Nitridingcitations
- 2018Phase Stability and Microstructure Evolution of Solution-Hardened 316L Powder Feedstock for Thermal Sprayingcitations
- 2018Enhanced Wear Behaviour of Spark Plasma Sintered AlCoCrFeNiTi High-Entropy Alloy Compositescitations
- 2018Influence of Titanium on Microstructure, Phase Formation and Wear Behaviour of AlCoCrFeNiTix High-Entropy Alloycitations
- 2017The Phase composition and microstructure of AlχCoCrFeNiTi alloys for the development of high-entropy alloy systemscitations
- 2017Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOFcitations
Places of action
Organizations | Location | People |
---|
article
Wear and Corrosion Behaviour of Supersaturated Surface Layers in the High-Entropy Alloy Systems CrMnFeCoNi and CrFeCoNi
Abstract
<jats:p>The surface hardening of single-face-centred cubic (fcc)-phase CrMnFeCoNi and the manganese-free CrFeCoNi alloy was conducted using low-temperature nitrocarburisation. The microstructural investigations reveal the successful formation of a homogeneous diffusion layer with a thickness of approximately 16 µm. The interstitial solution of carbon and nitrogen causes an anisotropic lattice expansion. The increase in microhardness is in accordance to the graded concentration profile of the interstitial elements. Wear tests show a significantly enhanced resistance at different loads. The electrochemical tests reveal no deterioration in the corrosion resistance. The absence of precipitates is proven by microstructural investigations. The results prove the applicability of the concept of solution hardening by the formation of supersaturated solutions for the material group of high-entropy alloys. Hence, an increase of entropy with the consideration of lattice interstices provides new development approaches.</jats:p>