Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zdziennicka, Anna

  • Google
  • 1
  • 2
  • 2

Maria Curie-Skłodowska University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Wettability of Quartz by Ethanol, Rhamnolipid and Triton X-165 Aqueous Solutions with Regard to Its Surface Tension2citations

Places of action

Chart of shared publication
Szymczyk, Katarzyna
1 / 2 shared
Jańczuk, Bronisław
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Szymczyk, Katarzyna
  • Jańczuk, Bronisław
OrganizationsLocationPeople

article

Wettability of Quartz by Ethanol, Rhamnolipid and Triton X-165 Aqueous Solutions with Regard to Its Surface Tension

  • Szymczyk, Katarzyna
  • Jańczuk, Bronisław
  • Zdziennicka, Anna
Abstract

<jats:p>The wettability of quartz by different liquids and solutions plays a very important role in practical applications. Hence, the wetting behaviour of ethanol (ET), rhamnolipid (RL) and Triton X-165 (TX165) aqueous solutions with regard to the quartz surface tension was investigated. The investigations were based on the contact angle measurements of water (W), formamide (F) and diiodomethane (D) as well as ET, RL and TX165 solutions on the quartz surface. The obtained results of the contact angle for W, F and D were used for the determination of quartz surface tension as well as its components and parameters using different approaches, whereas the results obtained for the aqueous solution of ET, RL and TX165 were considered with regard to their adsorption at the quartz–air, quartz–solution and solution–air interfaces as well as the solution interactions across the quartz–solution interface. The considerations of the relations between the contact angle and adsorption of solution components at different interfaces were based on the components and parameters of the quartz surface tension. They allow us to, among other things, establish the mechanism of the adsorption of individual components of the solution at the interfaces and standard Gibbs surface free energy of this adsorption.</jats:p>

Topics
  • surface