Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Janke, Kamil

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Colloidal Stability of Positively Charged Dispersions of Styrene and Acrylic Copolymers in the Presence of TiO2 and CaCO32citations

Places of action

Chart of shared publication
Parzuchowski, Paweł
1 / 9 shared
Mierzejewska, Jolanta
1 / 1 shared
Gutarowicz, Małgorzata
1 / 1 shared
Kaczorowski, Marcin
1 / 1 shared
Wojciechowski, Kamil
1 / 3 shared
Jurek, Ilona
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Parzuchowski, Paweł
  • Mierzejewska, Jolanta
  • Gutarowicz, Małgorzata
  • Kaczorowski, Marcin
  • Wojciechowski, Kamil
  • Jurek, Ilona
OrganizationsLocationPeople

article

Colloidal Stability of Positively Charged Dispersions of Styrene and Acrylic Copolymers in the Presence of TiO2 and CaCO3

  • Parzuchowski, Paweł
  • Mierzejewska, Jolanta
  • Janke, Kamil
  • Gutarowicz, Małgorzata
  • Kaczorowski, Marcin
  • Wojciechowski, Kamil
  • Jurek, Ilona
Abstract

Increasing antibiotic resistance of several pathogenic microorganisms calls for alternative approaches to prevent spreading of bacterial diseases. We propose to employ for this purpose coatings obtained from positively charged latex dispersions. In this contribution we characterize aqueous mixed dispersions containing TiO2 or CaCO3 and methyl methacrylate-ethyl acrylate or styrene-ethyl acrylate copolymers synthesized using a cationic surfactant, cetyltrimethylammonium bromide as an emulsifier. Particle size, electrokinetic (ζ) potential of the mixed dispersions and the resulting thin films, as well as antimicrobial properties of the latter are described. The TiO2 and CaCO3 dispersions were stabilised with polyethyleneimine (PEI) and optimum pH for the mixed dispersions were chosen on the basis of ζ-potential measurements. For TiO2, the maximum ζ = +35 mV was found at pH 7.5, and for CaCO3, pH was set at 8.2 (ζ = +38 mV), to prevent its dissolution. In most 1:1 mixtures of TiO2 or CaCO3 with the cetyltrimethylammonium bromide (CTAB)-stabilised latex dispersions, two distinct particles populations were observed, corresponding to the bare latex and bare TiO2 or CaCO3 fractions. Films made of the mixed dispersions remained positively charged and showed antimicrobial activity similar or reduced with respect to the bare polymer films.

Topics
  • dispersion
  • thin film
  • copolymer
  • surfactant