Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Carrera-Espinoza, Rafael

  • Google
  • 1
  • 6
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019A Stochastic Model and Investigation into the Probability Distribution of the Thickness of Boride Layers Formed on Low-Carbon Steel11citations

Places of action

Chart of shared publication
Hernández-Sánchez, Enrique
1 / 6 shared
Velázquez-Altamirano, Julio C.
1 / 1 shared
Teran-Méndez, Gerardo
1 / 1 shared
Torres-Avila, Itzel P.
1 / 2 shared
Cabrera-Sierra, Roman
1 / 2 shared
Capula-Colindres, Selene I.
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Hernández-Sánchez, Enrique
  • Velázquez-Altamirano, Julio C.
  • Teran-Méndez, Gerardo
  • Torres-Avila, Itzel P.
  • Cabrera-Sierra, Roman
  • Capula-Colindres, Selene I.
OrganizationsLocationPeople

article

A Stochastic Model and Investigation into the Probability Distribution of the Thickness of Boride Layers Formed on Low-Carbon Steel

  • Hernández-Sánchez, Enrique
  • Velázquez-Altamirano, Julio C.
  • Teran-Méndez, Gerardo
  • Torres-Avila, Itzel P.
  • Cabrera-Sierra, Roman
  • Capula-Colindres, Selene I.
  • Carrera-Espinoza, Rafael
Abstract

<jats:p>The stochastic nature of the thickness of boride layers formed on carbon steel is described in this paper. Additionally, the probability distribution of the layer thickness is studied to determine the best-fit probability distribution. The study combines the use of an empirical model (power-law) and the Markov chain principles, with the purpose of demonstrating that it is feasible to develop a model that represents the non-uniformity of the thickness of boride layers that form on carbon steel. The results indicate that the mean and variance tend to increase when the time or temperature is increased. The findings of this paper demonstrate that an analytical solution to the Kolmogorov’s system differential equation can adequately represent the behavior of non-uniform boride layer formed on low-carbon steel, regardless of the temperature or duration of treatment.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • steel
  • boride