Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Begg, Henry

  • Google
  • 2
  • 4
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Effect of Post-Deposition Thermal Treatments on Tensile Properties of Cold Sprayed Ti6Al4V7citations
  • 2019Effect of Microstructural Modifications on the Corrosion Resistance of CoCrFeMo0.85Ni Compositionally Complex Alloy Coatings15citations

Places of action

Chart of shared publication
Zhang, Xiang
1 / 49 shared
Mcnutt, Philip
1 / 4 shared
Khan, Raja
1 / 4 shared
Boruah, Dibakor
1 / 7 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Zhang, Xiang
  • Mcnutt, Philip
  • Khan, Raja
  • Boruah, Dibakor
OrganizationsLocationPeople

article

Effect of Microstructural Modifications on the Corrosion Resistance of CoCrFeMo0.85Ni Compositionally Complex Alloy Coatings

  • Begg, Henry
Abstract

<jats:p>A compositionally complex alloy (CCA) was developed in powder form and applied as a coating onto a carbon steels substrate by using thermal spray. The purpose of this study was to investigate the effect of microstructural modification induced by using two different powder production methods, mechanical alloying and gas atomisation, onto the corrosion resistance of the coatings for a CoCrFeMo0.85Ni composition. The evolution of microstructure from powders to coatings was analysed using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction. In order to evaluate the corrosion performance of the coatings, electrochemical corrosion tests were performed in a 3.5 wt % NaCl solution at pH = 4. The study demonstrates that the powder production method has a significant influence on the phase composition and, in turn, corrosion behaviour of the resulting coating, with the gas atomising route imparting better corrosion resistance properties. Nevertheless, the appearance of the face-centered cubic (FCC) phase characteristic of the CoCrFeMo0.85Ni alloy within the coating produced from the mechanically alloyed powder, opens the possibility for this powder manufacturing technique to effectively produce compositionally complex alloys.</jats:p>

Topics
  • microstructure
  • Carbon
  • corrosion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • steel
  • spectroscopy