People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rimmler, Berthold Henry
Max Planck Institute of Microstructure Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Surface Structuring of Diamond-Like Carbon Films by Chemical Etching of Zinc Inclusions
Abstract
<jats:p>A diamond-like carbon (DLC) film with a nanostructured surface can be produced in a two-step process. At first, a metal-containing DLC film is deposited. Here, the combination of plasma source ion implantation using a hydrocarbon gas and magnetron sputtering of a zinc target was used. Next, the metal particles within the surface are dissolved by an etchant (HNO3:H2O solution in this case). Since Zn particles in the surface of Zn-DLC films have a diameter of 100–200 nm, the resulting surface structures possess the same dimensions, thus covering a range that is accessible neither by mask deposition techniques nor by etching of other metal-containing DLC films, such as Cu-DLC. The surface morphology of the etched Zn-DLC films depends on the initial metal content of the film. With a low zinc concentration of about 10 at.%, separate holes are produced within the surface. Higher zinc concentrations (40 at.% or above) lead to a surface with an intrinsic roughness.</jats:p>