Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Breazu, Carmen

  • Google
  • 1
  • 7
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substrates47citations

Places of action

Chart of shared publication
Gherendi, Florin
1 / 3 shared
Rasoga, Oana
1 / 2 shared
Preda, Nicoleta
1 / 8 shared
Socol, Gabriel
1 / 9 shared
Costas, Andreea
1 / 6 shared
Stanculescu, Anca
1 / 3 shared
Socol, Marcela
1 / 9 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Gherendi, Florin
  • Rasoga, Oana
  • Preda, Nicoleta
  • Socol, Gabriel
  • Costas, Andreea
  • Stanculescu, Anca
  • Socol, Marcela
OrganizationsLocationPeople

article

Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substrates

  • Gherendi, Florin
  • Rasoga, Oana
  • Preda, Nicoleta
  • Breazu, Carmen
  • Socol, Gabriel
  • Costas, Andreea
  • Stanculescu, Anca
  • Socol, Marcela
Abstract

<jats:p>Indium tin oxide (ITO) thin films were grown on nanopatterned glass substrates by the pulsed laser deposition (PLD) technique. The deposition was carried out at 1.2 J/cm2 laser fluence, low oxygen pressure (1.5 Pa) and on unheated substrate. Arrays of periodic pillars with widths of ~350 nm, heights of ~250 nm, and separation pitches of ~1100 nm were fabricated on glass substrates using UV nanoimprint lithography (UV-NIL), a simple, cost-effective, and high throughput technique used to fabricate nanopatterns on large areas. In order to emphasize the influence of the periodic patterns on the properties of the nanostructured ITO films, this transparent conductive oxide (TCO) was also grown on flat glass substrates. Therefore, the structural, compositional, morphological, optical, and electrical properties of both non-patterned and patterned ITO films were investigated in a comparative manner. The energy dispersive X-ray analysis (EDX) confirms that the ITO films preserve the In2O3:SnO2 weight ratio from the solid ITO target. The SEM and atomic force microscopy (AFM) images prove that the deposited ITO films retain the pattern of the glass substrates. The optical investigations reveal that patterned ITO films present a good optical transmittance. The electrical measurements show that both the non-patterned and patterned ITO films are characterized by a low electrical resistivity (&lt;2.8 × 10−4). However, an improvement in the Hall mobility was achieved in the case of the nanopatterned ITO films, evidencing the potential applications of such nanopatterned TCO films obtained by PLD in photovoltaic and light emitting devices.</jats:p>

Topics
  • resistivity
  • mobility
  • scanning electron microscopy
  • thin film
  • Oxygen
  • atomic force microscopy
  • glass
  • glass
  • Energy-dispersive X-ray spectroscopy
  • tin
  • pulsed laser deposition
  • lithography
  • Indium