People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Socol, Marcela
National Institute of Materials Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Editorial for Special Issue: “Thin Films Based on Nanocomposites (2nd Edition)”
- 2023Macrocyclic Compounds: Metal Oxide Particles Nanocomposite Thin Films Deposited by MAPLEcitations
- 2022Editorial for Special Issue: “Thin Films Based on Nanocomposites”
- 2021Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Reviewcitations
- 2020Thin Films Based on Cobalt Phthalocyanine:C60 Fullerene:ZnO Hybrid Nanocomposite Obtained by Laser Evaporationcitations
- 2019Laser Processed Antimicrobial Nanocomposite Based on Polyaniline Grafted Lignin Loaded with Gentamicin-Functionalized Magnetitecitations
- 2019Pulsed Laser Deposition of Transparent Conductive Oxides on UV-NIL Patterned Substrates for Optoelectronic Applications
- 2018Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substratescitations
- 2017Laser Prepared Thin Films for Optoelectronic Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substrates
Abstract
<jats:p>Indium tin oxide (ITO) thin films were grown on nanopatterned glass substrates by the pulsed laser deposition (PLD) technique. The deposition was carried out at 1.2 J/cm2 laser fluence, low oxygen pressure (1.5 Pa) and on unheated substrate. Arrays of periodic pillars with widths of ~350 nm, heights of ~250 nm, and separation pitches of ~1100 nm were fabricated on glass substrates using UV nanoimprint lithography (UV-NIL), a simple, cost-effective, and high throughput technique used to fabricate nanopatterns on large areas. In order to emphasize the influence of the periodic patterns on the properties of the nanostructured ITO films, this transparent conductive oxide (TCO) was also grown on flat glass substrates. Therefore, the structural, compositional, morphological, optical, and electrical properties of both non-patterned and patterned ITO films were investigated in a comparative manner. The energy dispersive X-ray analysis (EDX) confirms that the ITO films preserve the In2O3:SnO2 weight ratio from the solid ITO target. The SEM and atomic force microscopy (AFM) images prove that the deposited ITO films retain the pattern of the glass substrates. The optical investigations reveal that patterned ITO films present a good optical transmittance. The electrical measurements show that both the non-patterned and patterned ITO films are characterized by a low electrical resistivity (<2.8 × 10−4). However, an improvement in the Hall mobility was achieved in the case of the nanopatterned ITO films, evidencing the potential applications of such nanopatterned TCO films obtained by PLD in photovoltaic and light emitting devices.</jats:p>