Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Böttcher, Ann-Christin

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Process and Formulation Strategies to Improve Adhesion of Nanoparticulate Coatings on Stainless Steel4citations

Places of action

Chart of shared publication
Garnweitner, Georg
1 / 13 shared
Kampen, Ingo
1 / 1 shared
Schilde, Carsten
1 / 1 shared
Kwade, Arno
1 / 20 shared
Hesselbach, Jutta
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Garnweitner, Georg
  • Kampen, Ingo
  • Schilde, Carsten
  • Kwade, Arno
  • Hesselbach, Jutta
OrganizationsLocationPeople

article

Process and Formulation Strategies to Improve Adhesion of Nanoparticulate Coatings on Stainless Steel

  • Garnweitner, Georg
  • Kampen, Ingo
  • Schilde, Carsten
  • Kwade, Arno
  • Böttcher, Ann-Christin
  • Hesselbach, Jutta
Abstract

The use of ceramic nanoparticles in coatings can significantly improve their mechanical properties such as hardness, adhesion to substrate, and scratch and abrasion resistance. A successful enhancement of these properties depends strongly on the coating formulation used, and the subsequent structure formed during coating. The aim of the present work was to enhance the adhesion between nanoparticulate coatings and stainless-steel substrates. A covalent particle structure was formed and better mechanical properties were achieved by modifying alumina nanoparticles, as well as substrates, with 3-aminopropyltriethoxysilane and by using a formulation consisting of solvent, modified particles, and bisphenol-A-diglycidylether as cross-linking additive. In addition to the adhesion force needed to remove the coating from the substrate, the type of failure (adhesive or cohesive) was characterized to gain a deeper understanding of the structure formation and to identify interdependencies between process, formulation, and coating structure properties. The modification process and the formulation composition were varied to achieve a detailed conception of the relevant correlations. By relating the results to other structural properties, such as the theoretical porosity and thickness, it was possible to understand the formation of the coating structure in more detail.

Topics
  • nanoparticle
  • stainless steel
  • hardness
  • porosity
  • ceramic