People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arshad, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024SEM-Guided Finite Element Simulation of Thermal Stresses in Multilayered Suspension Plasma-Sprayed TBCscitations
- 2023Tunability of the Optical Properties of Transition-Metal-Based Structural Phase Change Materialscitations
- 2023Surface engineered mesoporous silica carriers for the controlled delivery of anticancer drug 5-fluorouracil: Computational approach for the drug-carrier interactions using density functional theorycitations
- 2023A critical review on mechanical, durability, and microstructural properties of industrial by-product-based geopolymer compositescitations
- 2022High-Entropy Coatings (HEC) for High-Temperature Applications: Materials, Processing, and Propertiescitations
- 2022High-entropy coatings (HEC) for high-temperature applications : materials, processing, and propertiescitations
- 2022Perovskite LaNiO3/Ag3PO4 heterojunction photocatalyst for the degradation of dyescitations
- 2017Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologiescitations
Places of action
Organizations | Location | People |
---|
article
SEM-Guided Finite Element Simulation of Thermal Stresses in Multilayered Suspension Plasma-Sprayed TBCs
Abstract
This study presents novel insights into thermal stress development and crack propagation mechanisms in single- and multilayered suspension plasma-sprayed (SPS) coatings of gadolinium zirconate (GZ) and yttria-stabilized zirconia (YSZ), thermally treated at 1150 °C. By combining image processing with finite element simulation, we pinpointed sites of high-stress concentration in the coatings, leading to specific cracking patterns. Our findings reveal a dynamic shift in the location of stress concentration from intercolumnar gaps to pores near the top coat/thermally grown oxide (TGO) interface with TGO thickening at elevated temperatures, promoting horizontal crack development across the ceramic layers. Significantly, the interface between the ceramic layer and TGO was found to be a critical area, experiencing the highest levels of both normal and shear stresses. These stresses influence failure modes: in double-layer SPS structures, relatively higher shear stresses can result in mode II failure, while in single-layer systems, the predominant normal stresses tend to cause mode I failure. Understanding stress behavior and failure mechanisms is essential for enhancing the durability of thermal barrier coatings (TBCs) in high-temperature applications. Therefore, by controlling the interfaces’ roughness along with improving interfacial toughness, the initiation and propagation of cracks can be delayed along these interfaces. Moreover, efforts to optimize the level of microstructural discontinuities, such as intercolumnar gaps and pores, within the creaming layer and close to the TGO interface should be undertaken to reduce crack formation in the TBC system.