Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vallati, Andrea

  • Google
  • 1
  • 8
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023The Optical Properties of Thin Film Alloys of ZnO, TiO2 and ZrO2 with Al2O3 Synthesised Using Atomic Layer Deposition3citations

Places of action

Chart of shared publication
Wachnicki, Łukasz
1 / 4 shared
Gieraltowska, Sylwia
1 / 2 shared
Godlewski, Marek
1 / 3 shared
Jurzecka-Szymacha, Maria
1 / 1 shared
Jaglarz, Janusz
1 / 3 shared
Dulian, Piotr
1 / 2 shared
Seweryn, Aleksandra
1 / 3 shared
Nosidlak, Natalia
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Wachnicki, Łukasz
  • Gieraltowska, Sylwia
  • Godlewski, Marek
  • Jurzecka-Szymacha, Maria
  • Jaglarz, Janusz
  • Dulian, Piotr
  • Seweryn, Aleksandra
  • Nosidlak, Natalia
OrganizationsLocationPeople

article

The Optical Properties of Thin Film Alloys of ZnO, TiO2 and ZrO2 with Al2O3 Synthesised Using Atomic Layer Deposition

  • Wachnicki, Łukasz
  • Gieraltowska, Sylwia
  • Godlewski, Marek
  • Vallati, Andrea
  • Jurzecka-Szymacha, Maria
  • Jaglarz, Janusz
  • Dulian, Piotr
  • Seweryn, Aleksandra
  • Nosidlak, Natalia
Abstract

<jats:p>In this work, the results of ellipsometric studies of thin films of broadband oxides (ZnO, TiO2, ZrO2) and broadband oxides doped with Al2O3 (Al2O3–ZnO, Al2O3–TiO2, Al2O3–ZrO2) are presented. All layers have been produced using the atomic layer deposition method. Ellipsometric studies were performed in the wavelength range of 193–1690 nm. Sellmeier and Cauchy models were used to describe the optical properties of the tested layers. Dispersion dependencies of refractive indices were determined for thin layers of broadband oxides on silicon substrates, and then for layers of Al2O3 admixture. The EDX investigations enabled estimation of the composition of the alloys. The Bruggeman effective medium approximation (EMA) model was used to determine the theoretical dependencies of the dispersion refractive indices of the studied alloys. The refractive index values determined using the Bruggeman EMA model are in good agreement with the values determined from the ellipsometric measurements. The doping of thin layers of ZnO, ZrO2 and TiO2 with Al2O3 enables the creation of anti-reflective layers and filters with a specific refractive index.</jats:p>

Topics
  • dispersion
  • thin film
  • Silicon
  • Energy-dispersive X-ray spectroscopy
  • atomic layer deposition