Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kutyła, Dawid

  • Google
  • 5
  • 12
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024The Influence of Homogenous Magnetic Field Intensity on Surface Properties of Ni Thin Films Deposited from Citrate Baths and Their Role in Hydrogen Productioncitations
  • 2023Electrochemical Synthesis of Palladium–Selenide Coatingscitations
  • 2023The Influence of the Magnetic Field on Ni Thin Film Preparation by Electrodeposition Method and Its Electrocatalytic Activity towards Hydrogen Evolution Reaction10citations
  • 2021Electrocatalytic Properties of Co Nanoconical Structured Electrodes Produced by a One-Step or Two-Step Method11citations
  • 2021Well-Ordered 3D Printed Cu/Pd-Decorated Catalysts for the Methanol Electrooxidation in Alkaline Solutions5citations

Places of action

Chart of shared publication
Elsharkawy, Safya
2 / 2 shared
Żabiński, Piotr
2 / 3 shared
Kowalik, Remigiusz
1 / 3 shared
Jędraczka, Anna
2 / 3 shared
Świdniak, Monika
1 / 1 shared
Stępień, Michał
1 / 3 shared
Zabinski, Piotr
2 / 4 shared
Leszczyńska-Madej, Beata
1 / 5 shared
Marzec, Mateusz M.
1 / 5 shared
Skibińska, Katarzyna
2 / 3 shared
Jedraczka, Anna
1 / 1 shared
Palczewska-Grela, Justyna
1 / 1 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Elsharkawy, Safya
  • Żabiński, Piotr
  • Kowalik, Remigiusz
  • Jędraczka, Anna
  • Świdniak, Monika
  • Stępień, Michał
  • Zabinski, Piotr
  • Leszczyńska-Madej, Beata
  • Marzec, Mateusz M.
  • Skibińska, Katarzyna
  • Jedraczka, Anna
  • Palczewska-Grela, Justyna
OrganizationsLocationPeople

article

The Influence of the Magnetic Field on Ni Thin Film Preparation by Electrodeposition Method and Its Electrocatalytic Activity towards Hydrogen Evolution Reaction

  • Kutyła, Dawid
  • Zabinski, Piotr
  • Elsharkawy, Safya
Abstract

<jats:p>Ni thin films were synthesized through the electrodeposition method from three different electrolytes (acetate, borate, and citrate). Furthermore, they were assessed as electrocatalysts for hydrogen evolution reaction (HER) in 1 M NaOH. Herein, various electrodeposition parameters, such as the pH of the electrolytes, the deposition potential, and the influence of the magnetic field, were measured. We compared the different morphologies and characteristics depending on the thin film electrodeposition process parameters. Moreover, we studied the material’s wettability changes based on the electrolyte’s composition and the applied external magnetic field. It was found that the deposited Ni thin film from the citrate electrolyte under the influence of the magnetic field in the perpendicular direction to the electrode surface had the best catalytic performance to HER. It possessed an overpotential value of 231 mV and a Tafel slope of 118 mV dec−1. The deposition process was accomplished by using the chronoamperometry technique. Measuring scanning electron microscope and X-ray diffraction were used to characterize the fabricated films’ surface morphologies and crystalline structures.</jats:p>

Topics
  • surface
  • x-ray diffraction
  • thin film
  • Hydrogen
  • electrodeposition
  • chronoamperometry