People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holopainen, Jani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Effect of Atomic-Layer-Deposited Hydroxyapatite Coating on Surface Thrombogenicity of Titaniumcitations
- 2022Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Technique: Estimation of Bioactivity and Nanomechanical Properties
- 2022Osteoblast Attachment on Titanium Coated with Hydroxyapatite by Atomic Layer Depositioncitations
- 2019Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Technique : Estimation of Bioactivity and Nanomechanical Propertiescitations
- 2019Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Techniquecitations
- 2018Adhesion and mechanical properties of nanocrystalline hydroxyapatite coating obtained by conversion of atomic layer-deposited calcium carbonate on titanium substratecitations
- 2016Atomic Layer Deposition of Metal Phosphates and Lithium Silicates
- 2012Study of amorphous lithium silicate thin films grown by atomic layer depositioncitations
- 2012Lithium Phosphate Thin Films Grown by Atomic Layer Depositioncitations
Places of action
Organizations | Location | People |
---|
article
Effect of Atomic-Layer-Deposited Hydroxyapatite Coating on Surface Thrombogenicity of Titanium
Abstract
<p>This study aimed to evaluate the surface characteristics of a nanocrystalline hydroxyapatite coating made through atomic layer deposition (ALD-HA) on titanium surfaces and to investigate its effect on blood coagulation and platelet adhesion. Grade 2 square titanium discs (0.7 cm, 1 mm thick) were used (n = 108). Half of the substrates (n = 54) were coated with ALD-HA, and the other half were used as the non-coated control. Surface free energy (SFE), contact angle (CA), surface roughness (Ra), and chemical composition were evaluated. Blood thrombogenic properties were assessed on ALD-HA and non-coated surfaces using the kinetic clotting time method. The platelets’ adhesion and morphology were also evaluated. The ALD-HA-coated surfaces demonstrated significantly higher polar SFE (p < 0.001) and lower CA (p < 0.001) values compared to the non-coated surfaces. In addition, the surface roughness was significantly lower for the ALD-HA (p < 0.001) than for the non-coated surfaces. Platelets adhered to both surfaces; however, there was variability in platelet morphologies in different areas with higher platelet density on the ALD-HA surfaces. There was no significant difference in the overall absorbance values of the hemolyzed hemoglobin for both substrates, and the total clotting time was achieved at 60 min. It can be concluded that the ALD-HA coating of titanium can enhance surface wettability, increase surface free energy, and support blood coagulation and platelet adhesion.</p>