Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ovchinnikov, Evgenii

  • Google
  • 1
  • 7
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Synthesis of multicomponent coatings by electrospark alloying with powder materials6citations

Places of action

Chart of shared publication
Ianachevici, Anatoli
1 / 1 shared
Rukuiža, Raimundas
1 / 22 shared
Baciu, Constantin
1 / 2 shared
Mihailov, Valentin
1 / 3 shared
Ivashcu, Sergiu
1 / 1 shared
Kazak, Natalia
1 / 1 shared
Žunda, Audrius
1 / 17 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ianachevici, Anatoli
  • Rukuiža, Raimundas
  • Baciu, Constantin
  • Mihailov, Valentin
  • Ivashcu, Sergiu
  • Kazak, Natalia
  • Žunda, Audrius
OrganizationsLocationPeople

article

Synthesis of multicomponent coatings by electrospark alloying with powder materials

  • Ianachevici, Anatoli
  • Rukuiža, Raimundas
  • Baciu, Constantin
  • Ovchinnikov, Evgenii
  • Mihailov, Valentin
  • Ivashcu, Sergiu
  • Kazak, Natalia
  • Žunda, Audrius
Abstract

The results of systematic studies of the electrospark alloying process with the introduction of dispersed materials into plasma of low-voltage pulsed discharges are presented. Technological methods have been developed for supplying the powder material straight into the treatment zone through a hollow electrode of an anode or from the side, with the electrode-anode periodically contacting the substrate of cathode. It has been established that under the same energy regimes, when powder materials were introduced into the discharge zone, the increase in the mass of the cathode per time unit increases from 10 to 15 times or more. This study presents the process of synthesis of carbide phases (TiC and WC) during electrospark alloying of steel substrates with electrodes made of Ti, W, and graphite, with additional supply powders of these materials into the processing zone. A process has been developed for the synthesis of ternary compounds, so-called MAX-phases: Ti2AlC, Ti2AlN and Ti3SiC2 by electrospark alloying with powder compositions TiAlC, TiAlN and TiSiC. These MAX phases exhibit a unique combination of properties that are characteristic of both metals and ceramics. Energy modes of the processing were optimized, which resulted in high-quality coatings with the maximum content of carbide phases and ternary compounds. It has been established that the energy of electrical pulses during electrospark alloying, when powders of materials are fed into the interelectrode gap, ranges from 0.8 to 3.0 J, depending on their thermal physical properties. High wear and corrosion resistant characteristics of C45 structural steel with such electrospark coatings are obtained. The wear of steel with coatings in comparison with uncoated steel decreased by an average of 5.5–6.0 times. It was estimated the high corrosion resistance of 40X13 steel coated with TiC and WC in 3% NaCl solution. The corrosion current for these coatings is 0.044 and 0.075 A/cm2, respectively, and is significantly less than for coatings made of TiAlC, TiAlN, and TiSiC compositions. X-ray phase and optical metallographic microscopy analyses enabled the display of the amorphous-crystalline nature of the coatings

Topics
  • impedance spectroscopy
  • compound
  • amorphous
  • corrosion
  • phase
  • laser emission spectroscopy
  • carbide
  • microscopy
  • structural steel