Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bond, Trevor

  • Google
  • 1
  • 5
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Cold Spray Coatings of Complex Concentrated Alloys: Critical Assessment of Milestones, Challenges, and Opportunities17citations

Places of action

Chart of shared publication
Merwe, Josias Van Der
1 / 4 shared
Rahbar, Nima
1 / 12 shared
Asumadu, Tabiri
1 / 1 shared
Soboyejo, Wole
1 / 1 shared
Vandadi, Mobin
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Merwe, Josias Van Der
  • Rahbar, Nima
  • Asumadu, Tabiri
  • Soboyejo, Wole
  • Vandadi, Mobin
OrganizationsLocationPeople

article

Cold Spray Coatings of Complex Concentrated Alloys: Critical Assessment of Milestones, Challenges, and Opportunities

  • Bond, Trevor
  • Merwe, Josias Van Der
  • Rahbar, Nima
  • Asumadu, Tabiri
  • Soboyejo, Wole
  • Vandadi, Mobin
Abstract

<jats:p>Complex concentrated alloys (CCAs) are structural and functional materials of the future with excellent mechanical, physical, and chemical properties. Due to the equiatomic compositions of these alloys, cost can hinder scalability. Thus, the development of CCA-based coatings is critical for low-cost applications. The application of cold spray technology to CCAs is in its infancy with emphasis on transition elements of the periodic table. Current CCA-based cold spray coating systems showed better adhesion, cohesion, and mechanical properties than conventional one-principal element-based alloys. Comprehensive mechanical behavior, microstructural evolution, deformation, and cracking of cold spray CC-based coatings on the same and different substrates are reviewed. Techniques such as analytical models, finite element analysis, and molecular dynamic simulations are reviewed. The implications of the core effects (high configurational entropy and enthalpy of mixing, sluggish diffusion, severe lattice distortion, and cocktail behavior) and interfacial nanoscale oxides on the structural integrity of cold spray CCA-based coatings are discussed. The mechanisms of adiabatic heating, jetting, and mechanical interlocking, characteristics of cold spray, and areas for future research are highlighted.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • interfacial
  • finite element analysis
  • spray coating