People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rymer, Lisa-Marie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Non-Metallic Alloying Constituents to Develop a Wear-Resistant CrFeNi-BSiC High-Entropy Alloy for Surface Protective Coatings by Thermal Spraying and High-Speed Laser Metal Depositioncitations
- 2023Fracture behaviour of plasma electrolytic oxide coatings on an aluminium substrate using acoustic emissioncitations
- 2022Strain‐Rate Sensitive Deformation Behavior under Tension and Compression of Al0.3CrFeCoNiMo0.2citations
- 2022Microstructure and Corrosion Properties of AlCrFeCoNi High-Entropy Alloy Coatings Prepared by HVAF and HVOFcitations
- 2022Nb and Mo Influencing the High-Temperature Wear Behavior of HVOF-Sprayed High-Entropy Alloy Coatingscitations
- 2022Evolution of Microstructure and Hardness of the Nitrided Zone during Plasma Nitriding of High-Alloy Tool Steelcitations
- 2022High-Speed Laser Metal Deposition of CrFeCoNi and AlCrFeCoNi HEA Coatings with Narrow Intermixing Zone and their Machining by Turning and Diamond Smoothingcitations
- 2021Artificial aging time influencing the crack propagation behavior of the aluminum alloy 6060 processed by equal channel angular pressingcitations
- 2020Wear and Corrosion Behaviour of Supersaturated Surface Layers in the High-Entropy Alloy Systems CrMnFeCoNi and CrFeCoNicitations
- 2020Designing (Ultra)Fine-Grained High-Entropy Alloys by Spark Plasma Sintering and Equal-Channel Angular Pressingcitations
Places of action
Organizations | Location | People |
---|
article
Nb and Mo Influencing the High-Temperature Wear Behavior of HVOF-Sprayed High-Entropy Alloy Coatings
Abstract
<jats:p>To qualify high-entropy alloys (HEAs) as resource-saving and high-temperature wear-resistant coating materials, high-velocity oxygen fuel (HVOF) coatings produced from the inert gas-atomized powder of Al0.3CrFeCoNi, Al0.3CrFeCoNiNb0.5 and Al0.3CrFeCoNiMo0.75 were investigated in reciprocating wear tests at temperatures at 25, 500, 700 and 900 °C. In addition to the high-temperature wear tests, the microstructure and chemical composition of the three HEAs were analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). In particular, HVOF coatings are characterized by high hardness (Vickers hardness HV0.1) and low porosity, which were also determined. After high-temperature wear tests, the wear depth was measured using laser scanning microscopy (LSM). It was found that adding Nb and Mo to Al0.3CrFeCoNi significantly reduces the wear depth with increasing temperature. The wear mechanisms change from abrasive wear and delamination (25 °C and 500 °C) to a combination of (abrasion), delamination, adhesion and oxidative wear. Thereby, oxidative wear will be the primary mechanism at 900 °C for all the HVOF coatings investigated. The most important finding is that the adhesion of the oxide layer formed is improved by adding Nb and Mo, resulting in significantly reduced wear depth at 900 °C.</jats:p>