People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vekinis, George
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Electrochemical Behavior of Nickel Aluminide Coatings Produced by CAFSY Method in Aqueous NaCl Solutioncitations
- 2019Effects of Precursor Concentration in Solvent and Nanomaterials Room Temperature Aging on the Growth Morphology and Surface Characteristics of Ni–NiO Nanocatalysts Produced by Dendrites Combustion during SCScitations
- 2019Effects of Precursor Concentration in Solvent and Nanomaterials Room Temperature Aging on the Growth Morphology and Surface Characteristics of Ni–NiO Nanocatalysts Produced by Dendrites Combustion during SCScitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical Behavior of Nickel Aluminide Coatings Produced by CAFSY Method in Aqueous NaCl Solution
Abstract
<jats:p>Combustion-assisted flame spraying (CAFSY) is a novel method that allows in-flight synthesis of alloys during flame spraying. The in-flight synthesis of alloys by the CAFSY method during flame spraying combines two different methods: the self-propagating high-temperature synthesis (SHS) and flame spraying (FS). The present work studies the corrosion performance (by cyclic polarization and chronoamperometry in aerated 3.5 wt.% NaCl) of NiAl coatings fabricated by the CAFSY technique in relation to main process parameters (composition of the initial feedstock, spraying distance, substrate temperature, postdeposition heat treatment) and their effect on the microstructure and porosity of the coatings. Most of the coatings exhibited limited susceptibility to localized corrosion. In all cases, the steel substrate remained intact despite corrosion. Interconnected porosity was the main parameter accelerating uniform corrosion. Localized corrosion had the form of pitting and/or crevice corrosion in the coating that propagated dissolving Al and Al-rich nickel aluminides along coating defects. Substrate preheating and postdeposition heat treatment negatively affected the corrosion resistance. A short spraying distance (1.5 inch) increased the corrosion resistance of the coatings.</jats:p>