Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Carvalho, R. F. De

  • Google
  • 1
  • 7
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Influence of Optional Crystallization Firing on the Adhesion of Zirconia-Reinforced Lithium Silicate before and after Aging1citations

Places of action

Chart of shared publication
Jpm, Tribst
1 / 88 shared
Grangeiro, M. T. V.
1 / 2 shared
Rossi, N. R.
1 / 2 shared
Ramos, N. De Carvalho
1 / 1 shared
Kimpara, E. T.
1 / 3 shared
Junior, T. J. De Arruda Paes
1 / 1 shared
Rodrigues, M. R.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Jpm, Tribst
  • Grangeiro, M. T. V.
  • Rossi, N. R.
  • Ramos, N. De Carvalho
  • Kimpara, E. T.
  • Junior, T. J. De Arruda Paes
  • Rodrigues, M. R.
OrganizationsLocationPeople

article

Influence of Optional Crystallization Firing on the Adhesion of Zirconia-Reinforced Lithium Silicate before and after Aging

  • Jpm, Tribst
  • Grangeiro, M. T. V.
  • Carvalho, R. F. De
  • Rossi, N. R.
  • Ramos, N. De Carvalho
  • Kimpara, E. T.
  • Junior, T. J. De Arruda Paes
  • Rodrigues, M. R.
Abstract

© 2022 by the authors.This study proposed to evaluate the influence of the crystallization firing process and the hydrothermal degradation on the bond strength between different reinforced glass-ceramics and resin cement. Material and Methods: zirconia-reinforced lithium silicate (ZLS) and lithium disilicate (LD) were divided into six groups according to aging simulation (baseline or after thermocycling) and restorative approach (ZLS without firing; ZLS with firing; LD with firing). ZLS and LD surfaces were etched with 5% hydrofluoric acid for 30 s and 20 s, respectively, and then received a layer of silane coupling agent (Monobond-N). Then, cylinders of resin cement (1 mm diameter × 2 mm height) were bonded onto their surfaces. The baseline samples were immersed in distilled water for 24 h before the microshear bond strength (µSBS) test, while half of the specimens were tested after 6000 cycles of thermocycling aging. The types of failures were analyzed through stereomicroscopic and scanning electron microscope. The failure modes were classified as adhesive, predominantly adhesive, cohesive in ceramic, or cohesive in cement. The µSBS data were analyzed by two-way ANOVA and Tukey’s test. A restorative approach (p = 0.000) and aging (p = 0.000) affected the bond strength. The highest bond-strength values were observed in the ZLS without the optional crystallization firing. The most frequent failures were adhesive and predominantly adhesive. The cementation of zirconia-reinforced lithium silicate without the optional crystallization firing process leads to high bond-strength values with resin cement.

Topics
  • surface
  • simulation
  • glass
  • glass
  • strength
  • cement
  • Lithium
  • aging
  • ceramic
  • resin
  • crystallization
  • aging