Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Rabesh Kumar

  • Google
  • 1
  • 6
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Microwave-Assisted Synthesis, Characterization and Tribological Properties of a g-C3N4/MoS2 Nanocomposite for Low Friction Coatings16citations

Places of action

Chart of shared publication
Hloch, Sergej
1 / 9 shared
Srivastava, Dr. Ashish Kumar
1 / 3 shared
Sharma, Anuj Kumar
1 / 2 shared
Dixit, Amit Rai
1 / 7 shared
Nag, Akash
1 / 4 shared
Saxena, Mukul
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Hloch, Sergej
  • Srivastava, Dr. Ashish Kumar
  • Sharma, Anuj Kumar
  • Dixit, Amit Rai
  • Nag, Akash
  • Saxena, Mukul
OrganizationsLocationPeople

article

Microwave-Assisted Synthesis, Characterization and Tribological Properties of a g-C3N4/MoS2 Nanocomposite for Low Friction Coatings

  • Hloch, Sergej
  • Srivastava, Dr. Ashish Kumar
  • Sharma, Anuj Kumar
  • Dixit, Amit Rai
  • Nag, Akash
  • Singh, Rabesh Kumar
  • Saxena, Mukul
Abstract

<jats:p>This study explores the tribological performance of microwave-assisted synthesized g-C3N4/MoS2 coatings. The two-dimensional transition metal dichalcogenide (TMD) nanosheet is getting prominence in the study of tribology due to its layered structure. The graphitic carbon nitride (g-C3N4) nanosheet was made using the calcination method and its nanocomposite with molybdenum disulfide (MoS2) was produced using a microwave-assisted method. The structure and morphology of the samples were characterized by some well-known methods, and tribological properties were studied by a pin-on-disc (POD) apparatus. Morphological analysis revealed that graphitic carbon nitride and molybdenum disulfide coexisted, and the layer structured MoS2 was well dispersed on graphitic carbon nitride nanosheets. BET analysis was used to determine the pore volume and specific surface area of the synthesized materials. The inclusion of MoS2 nanoparticles caused the composite’s pore volume and specific surface area to decrease. The reduction in g-C3N4 pore volume and specific surface area confirmed that the pores of calcinated graphitic carbon nitride were filled with MoS2 nanoparticles. The tribological property of g-C3N4/MoS2 nanocomposite was systematically investigated under different factors such as applied loads (5N to 15N), sliding speed (500 to 1000 mm/s) and material composition (uncoated, MoS2-coated, 9 wt.% of g-C3N4 and 20 wt.% of g-C3N4 in the composite). The optimal composite material ratio was taken 9%, by weight of g-C3N4 in the g-C3N4/MoS2 composite for a variety of levels of loads and sliding speeds. The results indicates that the incorporation of g-C3N4 in nanocomposites could reduce friction and improve wear life, which were better than the results with single MoS2. This study demonstrates a solution to broaden the possible uses of g-C3N4 and MoS2-based materials in the field of tribology.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • pore
  • surface
  • molybdenum
  • Carbon
  • inclusion
  • nitride
  • layered
  • two-dimensional