People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Uhe, Johanna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Numerical investigation of rotational friction welding for C22.8 - 41Cr4 joints using a substitute model
- 2024Prevention of scaling by means of recycled process waste gases
- 2023KNN-Entwicklung in der Halbwarmumformung/ANN development in semi-hot forming
- 2023Investigation of the joining zone formation of impact extruded hybrid components by varied forming sequence and partial cooling
- 2023Investigation of the joining zone formation of impact extruded hybrid components by varied forming sequence and partial coolingcitations
- 2023Modelling failure of joining zones during forming of hybrid parts
- 2022Comparison of the Joining Zone Development of Hybrid Semi-Finished Products after Different Extrusion Processes
- 2022Investigations on Additively Manufactured Stainless Bearingscitations
- 2022Tailored Forming of hybrid bulk metal components
- 2022Tailored Forming: Drucküberlagertes Warmfließpressen
- 2021Joining zone evaluation of hybrid semi-finished products after backward can extrusion
- 2021Numerical evaluation of forging process designs of a hybrid co-extruded demonstrator consisting of steel and aluminium.
- 2021Influence of degree of deformation on welding pore reduction in high-carbon steelscitations
- 2021Process chain for the manufacture of hybrid bearing bushingscitations
- 2021Challenges in the Forging of Steel-Aluminum Bearing Bushings
- 2021Contact Geometry Modification of Friction-Welded Semi-Finished Products to Improve the Bonding of Hybrid Componentscitations
- 2020Characterization and modeling of intermetallic phase formation during the joining of aluminum and steel in analogy to co-extrusion
- 2020Characterization and modeling of intermetallic phase formation during the joining of aluminum and steel in analogy to co-extrusioncitations
- 2020Numerical investigations regarding a novel process chain for the production of a hybrid bearing bushingcitations
- 2020Lateral angular co-extrusioncitations
- 2020Lateral angular co-extrusion: Geometrical and mechanical properties of compound profiles
- 2019Numerical modeling of the development of intermetallic layers between aluminium and steel during co-extrusioncitations
- 2017Mechanical properties of co-extruded aluminium-steel compounds
Places of action
Organizations | Location | People |
---|
article
Investigations on Additively Manufactured Stainless Bearings
Abstract
Additive manufacturing with multi-material design offers great possibilities for lightweight and function-integrated components. A process chain was developed in which hybrid steel–steel-components with high fatigue strength were produced. For this, a material combination of stainless powder material Rockit® (0.52 wt.% C, 0.9% Si, 14% Cr, 0.4% Mo, 1.8% Ni, 1.2% V, bal. Fe) cladded onto ASTM A572 mild steel by plasma arc powder deposition welding was investigated. Extensive material characterization has shown that defect-free claddings can be produced by carefully adjusting the welding process. With a tailored heat treatment strategy and machining of the semi-finished products, bearing washers for a thrust cylindrical roller bearing were produced. These washers showed a longer fatigue life than previously produced bearing washers with AISI 52100 bearing steel as cladding. It was also remarkable that the service life with the Rockit® cladding material was longer than that of conventional monolithic AISI 52100 washers. This was reached through a favourable microstructure with finely distributed vanadium and chromium carbides in a martensitic matrix as well as the presence of compressive residual stresses, which are largely retained even after testing. The potential for further enhancement of the cladding performance through Tailored Forming was investigated in compression and forging tests and was found to be limited due to low forming capacity of the material.