People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Herbst, Sebastian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Intermetallic Compound Layer Morphology and Distribution in Friction‐Welded Steel–Aluminum Componentscitations
- 2024Corrosion fatigue behavior of nanoparticle modified iron processed by electron powder bed fusion
- 2023Correlating Ultrasonic Velocity in DC04 with Microstructure for Quantification of Ductile Damage
- 2023Electroplasticity Mechanisms in hcp Materialscitations
- 2022Corrosion fatigue behavior of electron beam melted iron in simulated body fluidcitations
- 2022Corrosion fatigue behavior of electron beam melted iron in simulated body fluid
- 2022Investigations on Additively Manufactured Stainless Bearingscitations
- 2022Non-destructive Evaluation of Workpiece Properties along the Hybrid Bearing Bushing Process Chaincitations
- 2021Hot forming of shape memory alloys in steel shells: formability, interface, bonding quality
- 2021Influence of Pre-strain on Very-Low-Cycle Stress–Strain Response and Springback Behavior
- 2021Cold roll bonding of tin-coated steel sheets with subsequent heat treatmentcitations
- 2021In Situ X-Ray Diffraction Analysis of Microstructure Evolution during Deep Cryogenic Treatment and Tempering of Tool Steels
- 2020Ion Beam Processing for Sample Preparation of Hybrid Materials with Strongly Differing Mechanical Propertiescitations
- 2020Casting manufacturing of cylindrical preforms made of low alloy steelscitations
- 2020Towards dry machining of titanium-based alloys : A new approach using an oxygen-free environment
- 2020Microstructural evolution and mechanical properties of hybrid bevel gears manufactured by tailored formingcitations
- 2020Numerical investigations regarding a novel process chain for the production of a hybrid bearing bushingcitations
- 2020Simulation assisted process chain design for the manufacturing of bulk hybrid shafts with tailored propertiescitations
- 2020Manufacturing and Virtual Design to Tailor the Properties of Boron-Alloyed Steel Tubescitations
- 2020Towards dry machining of titanium-based alloys: a new approach using an oxygen-free environmentcitations
- 2020Tailored forming of hybrid bevel gears with integrated heat treatmentcitations
- 2016Holistic consideration of grain growth behavior of tempering steel 34CrNiMo6 during heating processescitations
Places of action
Organizations | Location | People |
---|
article
Investigations on Additively Manufactured Stainless Bearings
Abstract
Additive manufacturing with multi-material design offers great possibilities for lightweight and function-integrated components. A process chain was developed in which hybrid steel–steel-components with high fatigue strength were produced. For this, a material combination of stainless powder material Rockit® (0.52 wt.% C, 0.9% Si, 14% Cr, 0.4% Mo, 1.8% Ni, 1.2% V, bal. Fe) cladded onto ASTM A572 mild steel by plasma arc powder deposition welding was investigated. Extensive material characterization has shown that defect-free claddings can be produced by carefully adjusting the welding process. With a tailored heat treatment strategy and machining of the semi-finished products, bearing washers for a thrust cylindrical roller bearing were produced. These washers showed a longer fatigue life than previously produced bearing washers with AISI 52100 bearing steel as cladding. It was also remarkable that the service life with the Rockit® cladding material was longer than that of conventional monolithic AISI 52100 washers. This was reached through a favourable microstructure with finely distributed vanadium and chromium carbides in a martensitic matrix as well as the presence of compressive residual stresses, which are largely retained even after testing. The potential for further enhancement of the cladding performance through Tailored Forming was investigated in compression and forging tests and was found to be limited due to low forming capacity of the material.