People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Matykina, Endzhe
Universidad Complutense de Madrid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Functionalization of Plasma Electrolytic Oxidation/Sol–Gel Coatings on AZ31 with Organic Corrosion Inhibitorscitations
- 2024Screening of fluoride-free PEO coatings on cast Mg3Zn0.4Ca alloy for orthopaedic implantscitations
- 2024Degradation Rate Control Issues of PEO-Coated Wrought Mg0.5Zn0.2Ca Alloy
- 2023Ciprofloxacin release and corrosion behaviour of a hybrid PEO/PCL coating on Mg3Zn0.4Ca alloycitations
- 2023As-cast and extruded Mg-Zn-Ca systems for biodegradable implants: Characterization and corrosion behaviorcitations
- 2022Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part II—PEO and Anodizingcitations
- 2022Combination of Electron Beam Surface Structuring and Plasma Electrolytic Oxidation for Advanced Surface Modification of Ti6Al4V Alloycitations
- 2022Energy consumption, wear and corrosion of PEO coatings on preanodized Al alloy: the influence of current and frequencycitations
- 2021Hard Anodizing and Plasma Electrolytic Oxidation of an Additively Manufactured Al-Si alloycitations
- 2021Effect of cerium (IV) on thin sulfuric acid anodizing of 2024-T3 alloycitations
- 2020Calcium Doped Flash-PEO Coatings for Corrosion Protection of Mg Alloycitations
- 2020PEO coating with Ce-sealing for corrosion protection of LPSO Mg-YZn alloycitations
- 2019Degradation Behaviour of Mg0.6Ca and Mg0.6Ca2Ag Alloys with Bioactive Plasma Electrolytic Oxidation Coatingscitations
- 2019LDH Post-Treatment of Flash PEO Coatingscitations
- 2019LDH Post-Treatment of Flash PEO Coatingscitations
- 2018Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloycitations
- 2017Characterization and corrosion behavior of binary Mg-Ga alloyscitations
- 2016PEO of rheocast A356 Al alloy:energy efficiency and corrosion propertiescitations
- 2016PEO of rheocast A356 Al alloycitations
- 2014Galvanic corrosion of rare earth modified AM50 and AZ91D magnesium alloys coupled to steel and aluminium alloyscitations
- 2011Corrosion of magnesium-aluminum alloys with Al-11Si/SiC thermal spray composite coatings in chloride solutioncitations
- 2010In vitro evaluation of cell proliferation and collagen synthesis on titanium following plasma electrolytic oxidationcitations
Places of action
Organizations | Location | People |
---|
article
Combination of Electron Beam Surface Structuring and Plasma Electrolytic Oxidation for Advanced Surface Modification of Ti6Al4V Alloy
Abstract
<jats:p>The objective of this work is to study for the first time the combination of electron beam (EB) surface structuring and plasma electrolytic oxidation (PEO) with the aim of providing a multiscale topography and bioactive surface to the Ti6Al4V alloy for biomedical applications. Ca and P-containing coatings were produced via 45 s PEO treatments over multi-scale EB surface topographies. The coatings morphology and composition were characterized by a means of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The effect on the previous EB topography was evaluated by means of a 3D optical profilometry and electrochemical response via potentiodynamic polarization tests. In general, the PEO process, morphology, composition and growth rate of the coatings were almost identical, irrespective of the topography treated. Minimal local differences were found in terms of morphology, and the growth rate were related to specific topographical features. Nevertheless, all the PEO-coated substrates presented essentially the same corrosion resistance. Electrochemical tests revealed a localized crevice corrosion susceptibility of all the bare EB topographies, which was successfully prevented after the PEO treatment.</jats:p>