Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ratlamwala, Tahir Abdul Hussain

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Machining of Carbon Steel under Aqueous Environment: Investigations into Some Performance Measures1citations

Places of action

Chart of shared publication
Giasin, Khaled
1 / 48 shared
Shehbaz, Tauheed
1 / 7 shared
Hussain, Ghulam
1 / 19 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Giasin, Khaled
  • Shehbaz, Tauheed
  • Hussain, Ghulam
OrganizationsLocationPeople

article

Machining of Carbon Steel under Aqueous Environment: Investigations into Some Performance Measures

  • Giasin, Khaled
  • Shehbaz, Tauheed
  • Hussain, Ghulam
  • Ratlamwala, Tahir Abdul Hussain
Abstract

<jats:p>In this study, a new machining approach (aqueous machining) is applied for mill machining and its performance is compared with traditional wet machining. AISI 1020 steel is employed as the test material and Taguchi statistical methodology is implemented to analyze and compare the performance of the two machining approaches. The cutting speed, feed rate, and depth of cut were the machining parameters used for both types of machining, while the selected response variables were surface roughness and hardness. Temperature variations were also recorded in aqueous machining. Compared with wet machining, aqueous machining resulted in lower surface roughness (up to 13%) for the same operating conditions and about 14% to 16% enhancement in hardness due to the formation of finer pearlite, as revealed by the microstructure analysis. Compared to the parent unmachined surface, the hardness of machined surfaces was 24% to 31% higher in wet machining and 44% to 51% higher in aqueous machining. Another benefit of aqueous machining was the energy gain, which ranged from 718 to 8615.96 J. This amount of heat energy can be used as waste heat for preheating domestic hot water, running the organic Rankine cycle with waste heat and preheating the inlet saline water for desalination, vacuum desalination, etc. If successfully implemented in the future, this idea will provide a step towards achieving sustainable machining by saving lubricants and toxic wastes in addition to saving energy for secondary applications.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • Carbon
  • steel
  • hardness