Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nejneru, Carmen

  • Google
  • 3
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Analysis of the Physical-Mechanical Properties of the Zinc Phosphate Layer Deposited on a Nodular Cast Iron Substratecitations
  • 2022Corrosion Behaviour of Nodular Cast Iron Used for Rotor Manufacturing in Different Wastewaters3citations
  • 2014Active Screen Plasma Nitriding Efficiency and Ecology5citations

Places of action

Chart of shared publication
Perju, Manuela Cristina
3 / 3 shared
Axinte, Mihai
3 / 7 shared
Nergis, Diana Petronela Burduhos
2 / 5 shared
Bejinariu, Costica
2 / 13 shared
Vizureanu, Petrica
1 / 11 shared
Chicet, Daniela Lucia
1 / 7 shared
Țugui, Cătălin Andrei
1 / 1 shared
Chart of publication period
2022
2014

Co-Authors (by relevance)

  • Perju, Manuela Cristina
  • Axinte, Mihai
  • Nergis, Diana Petronela Burduhos
  • Bejinariu, Costica
  • Vizureanu, Petrica
  • Chicet, Daniela Lucia
  • Țugui, Cătălin Andrei
OrganizationsLocationPeople

article

Corrosion Behaviour of Nodular Cast Iron Used for Rotor Manufacturing in Different Wastewaters

  • Perju, Manuela Cristina
  • Axinte, Mihai
  • Nergis, Diana Petronela Burduhos
  • Bejinariu, Costica
  • Nejneru, Carmen
Abstract

<jats:p>Submersible drainage sump pumps work in a highly corrosive environment, forming films with corrosive reaction products on the surface. Pump rotors are high-demand parts, so they are made of quality materials with good wear and corrosion resistance properties such as nodular graphite cast iron. This paper analyses the corrosion behaviour of cast iron used in the manufacture of rotors in three types of wastewaters, with variable pH. Nodular graphite cast iron samples were immersed in wastewater for 30, 60, and 90 days and tested by linear polarisation and electrochemical impedance spectroscopy (EIS). Also, the layers of reaction products formed on the surface of the material were analysed by SEM and EDS. The results showed that nodular cast-iron immersed in wastewater with acidic pH showed intense corrosion, the oxide layer formed on its surface is unstable. Also, the final structure of the product layer is that of a tri-layer with cations and anions absorbed from the corrosion media: the double-electric layer directly connected to the metal surface, an internal layer consisting of ferrous compounds and ferric compounds that control the diffusion of oxygen, an outer layer, and a compact crust of ferric compounds. The change in the pH of the wastewater has a major influence on the corrosion rate of the cast iron, which increases from 356.4 µm/year in DWW-1 (6.5 pH) to 1440 µm/year in DWW-2 (3 pH) and 1743 µm/year DWWW-3 (11 pH) respectively. As can be seen, the experimental study covers the problem of the corrosion behaviour of the pump rotor in various types of wastewaters this aspect is particularly important for the good use of wastewater pumps and to predict possible deviations for the operation of the equipment within the treatment plants.</jats:p>

Topics
  • surface
  • compound
  • corrosion
  • scanning electron microscopy
  • Oxygen
  • forming
  • iron
  • electrochemical-induced impedance spectroscopy
  • Energy-dispersive X-ray spectroscopy
  • nodular cast iron