People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rymer, Lisa-Marie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Non-Metallic Alloying Constituents to Develop a Wear-Resistant CrFeNi-BSiC High-Entropy Alloy for Surface Protective Coatings by Thermal Spraying and High-Speed Laser Metal Depositioncitations
- 2023Fracture behaviour of plasma electrolytic oxide coatings on an aluminium substrate using acoustic emissioncitations
- 2022Strain‐Rate Sensitive Deformation Behavior under Tension and Compression of Al0.3CrFeCoNiMo0.2citations
- 2022Microstructure and Corrosion Properties of AlCrFeCoNi High-Entropy Alloy Coatings Prepared by HVAF and HVOFcitations
- 2022Nb and Mo Influencing the High-Temperature Wear Behavior of HVOF-Sprayed High-Entropy Alloy Coatingscitations
- 2022Evolution of Microstructure and Hardness of the Nitrided Zone during Plasma Nitriding of High-Alloy Tool Steelcitations
- 2022High-Speed Laser Metal Deposition of CrFeCoNi and AlCrFeCoNi HEA Coatings with Narrow Intermixing Zone and their Machining by Turning and Diamond Smoothingcitations
- 2021Artificial aging time influencing the crack propagation behavior of the aluminum alloy 6060 processed by equal channel angular pressingcitations
- 2020Wear and Corrosion Behaviour of Supersaturated Surface Layers in the High-Entropy Alloy Systems CrMnFeCoNi and CrFeCoNicitations
- 2020Designing (Ultra)Fine-Grained High-Entropy Alloys by Spark Plasma Sintering and Equal-Channel Angular Pressingcitations
Places of action
Organizations | Location | People |
---|
article
High-Speed Laser Metal Deposition of CrFeCoNi and AlCrFeCoNi HEA Coatings with Narrow Intermixing Zone and their Machining by Turning and Diamond Smoothing
Abstract
<jats:p>The processing of high-entropy alloys (HEAs) via laser metal deposition (LMD) is well known. However, it is still difficult to avoid chemical intermixing of the elements between the coating and the substrate. Therefore, the produced coatings do not have the same chemical composition as the HEA feedstock material. Single-layer CrFeCoNi and AlCrFeCoNi HEA coatings were deposited using high-speed laser metal deposition (HS-LMD). Elemental mapping confirmed a good agreement with the chemical composition of the powder feedstock material, and revealed that chemical intermixing was confined to the immediate substrate interface. The coatings are characterized by a homogeneous structure with good substrate bonding. The machining of these coatings via turning is possible. Subsequent diamond smoothing results in a strong decrease in the surface roughness. This study presents a complete manufacturing chain for the production of high-quality HS-LMD HEA coatings.</jats:p>