Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uddin, Mezbah

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Novel Micronized Mica Modified Casein–Aluminum Hydroxide as Fire Retardant Coatings for Wood Products4citations

Places of action

Chart of shared publication
Li, Ling
1 / 3 shared
Orell, Olli Aleksi
1 / 8 shared
Sarlin, Essi Linnea
1 / 51 shared
Haapala, Antti
1 / 4 shared
Alabbad, Maitham
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Li, Ling
  • Orell, Olli Aleksi
  • Sarlin, Essi Linnea
  • Haapala, Antti
  • Alabbad, Maitham
OrganizationsLocationPeople

article

Novel Micronized Mica Modified Casein–Aluminum Hydroxide as Fire Retardant Coatings for Wood Products

  • Uddin, Mezbah
  • Li, Ling
  • Orell, Olli Aleksi
  • Sarlin, Essi Linnea
  • Haapala, Antti
  • Alabbad, Maitham
Abstract

Sustainable coating solutions that function as a fire retardant for wood are still a challenging topic for the academic and industrial sectors. In this study, composite coatings of casein protein mixed with mica and aluminum trihydroxide (ATH) were tested as fire retardants for wood and plywood; coating degradation and fire retardancy performance were assessed with a cone calorimeter, and a thermogravimeter was used for the thermal stability measurement. The results indicated that casein–mica composites were beneficial as coatings. The heat release rate (HRR) and the total heat released (THR) of the sample coated with casein–mica composite were reduced by 55% and 37%, respectively; the time to ignition was increased by 27% compared to the untreated sample. However, the TTI of the sample coated with the casein–mica–ATH composite was increased by 156%; the PHR and THR were reduced by 31% and 28%, respectively. This is attributed to the yielded insulating surface layer, active catalytic sites, and the crosslink from mica and endothermic decomposition of ATH and casein producing different fragments which create multiple modes of action, leading to significant roles in suppressing fire spread. The multiple modes of action involved in the prepared composites are presented in detail. Coating wear resistance was investigated using a Taber Abrader, and adhesion interaction between wood and a coated composite were investigated by applying a pull-off test. While the addition of the three filler types to casein caused a decrease in the pull-off adhesion strength by up to 38%, their abrasion resistance was greatly increased by as much as 80%. ; Peer reviewed

Topics
  • impedance spectroscopy
  • surface
  • aluminium
  • wear resistance
  • strength
  • composite
  • wood
  • decomposition