People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sokołowski, Jerzy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Enhancing the Antimicrobial Properties of Experimental Resin-Based Dental Composites through the Addition of Quaternary Ammonium Saltscitations
- 2023Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literaturecitations
- 2023Evaluation of the Selected Mechanical and Aesthetic Properties of Experimental Resin Dental Composites Containing 1-phenyl-1,2 Propanedione or Phenylbis(2,4,6-trimethylbenzoyl)-phosphine Oxide as a Photoinitiatorcitations
- 2023The Shear Bond Strength of Resin-Based Luting Cement to Zirconia Ceramics after Different Surface Treatmentscitations
- 2023Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite?citations
- 2022Can TPO as Photoinitiator Replace “Golden Mean” Camphorquinone and Tertiary Amines in Dental Composites? Testing Experimental Composites Containing Different Concentration of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide citations
- 2021A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Compositescitations
- 2021An Evaluation of the Properties of Urethane Dimethacrylate-Based Dental Resinscitations
- 2021The Influence of Various Photoinitiators on the Properties of Commercial Dental Compositescitations
- 2021The Photoinitiators Used in Resin Based Dental Composite—A Review and Future Perspectivescitations
- 2020Challenges of Co–Cr Alloy Additive Manufacturing Methods in Dentistry—The Current State of Knowledge (Systematic Review)citations
- 2020Ageing of Dental Composites Based on Methacrylate Resins—A Critical Review of the Causes and Method of Assessment citations
- 2019Effect of surface cleaning regimen on glass ceramic bond strengthcitations
- 2018Modyfikacja światłoutwardzalnego kompozytu stomatologicznego wybranymi poliedrycznymi oligomerycznymi silseskwioksanamicitations
- 2017Mechanical properties of composite material modified with essential oilcitations
- 2017Degradacja warstwy hybrydowej - przegląd piśmiennictwa
- 2017The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stresscitations
- 2017Influence of polymerization process condition on selected properties and the shrinkage stress generated during solidification of a nanohybrid universal restorative material
- 2016Wpływ sorpcji wody na naprężenia skurczowe materiałów kompozytowych
- 2016Dental composites based on dimethacrylate resins reinforced by nanoparticulate silicacitations
- 2016Wpływ dodatku przeciwdrobnoustrojowego triklosanu na wybrane właściwości cementu szklano-jonomerowego aktywowanego wodą
- 2014The impact of nanosilver addition on element ions release form light-cured dental composite and compomer into 0.9% NaCl
Places of action
Organizations | Location | People |
---|
article
A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Composites
Abstract
Dual-curing composites have a wide spectrum of use in practice (rebuilding, reconstruction, and luting). The characterization of this type of material and comparative study of selected mechanical properties with light-cured materials were carried out for this paper. In this study, we used six materials with a dual-cure system—Bulk EZ, Fill-Up!, StarFill 2B, Rebilda DC, MultiCore Flow, Activa Bioactive-Restorative—and three light-cured materials—Filtek Bulk Fill Posterior, Charisma Classic, and G-aenial Universal Flo. The materials were conditioned for 24 h in water at 37 °C before testing. Selected material properties were determined: three-point bending flexural strength, diametral tensile strength, hardness, microhardness, and shrinkage stress. The highest three-point bending flexural strength (TPB) was 137.0 MPa (G-aenial Universal Flo), while the lowest amounted to 86.5 MPa (Activa Bioactive). The diametral tensile strength (DTS) values were in a range from 39.2 MPa (Rebilda DC) to 54.1 MPa (Charisma Classic). The lowest hardness (HV) value of 26 was obtained by the Activa Bioactive material, while the highest values were recorded for Filtek Bulk Fill Posterior and Charisma Classic-53. The shrinkage stress of the tested materials ranged from 6.3 MPa (Charisma Classic) to 13.2 MPa (G-aenial Universal Flo). Dual-curing composites were found to have similar properties to light-cured composites.