Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kosobrodova, Elena

  • Google
  • 2
  • 10
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Plasma Surface Engineering to Biofunctionalise Polymers for β-Cell Adhesion3citations
  • 2020Bioactivation of Encapsulation Membranes Reduces Fibrosis and Enhances Cell Survival18citations

Places of action

Chart of shared publication
Thorn, Peter
2 / 2 shared
Hallahan, Nicole
2 / 2 shared
Santos, Miguel
1 / 2 shared
Bilek, Marcela M. M.
1 / 13 shared
Chan, Alex H. P.
1 / 1 shared
Lam, Yuen Ting
1 / 1 shared
Tan, Richard P.
1 / 2 shared
Wei, Fei
1 / 1 shared
Michael, Praveesuda L.
1 / 1 shared
Wise, Steven G.
1 / 3 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Thorn, Peter
  • Hallahan, Nicole
  • Santos, Miguel
  • Bilek, Marcela M. M.
  • Chan, Alex H. P.
  • Lam, Yuen Ting
  • Tan, Richard P.
  • Wei, Fei
  • Michael, Praveesuda L.
  • Wise, Steven G.
OrganizationsLocationPeople

article

Plasma Surface Engineering to Biofunctionalise Polymers for β-Cell Adhesion

  • Thorn, Peter
  • Hallahan, Nicole
  • Kosobrodova, Elena
Abstract

<jats:p>Implant devices containing insulin-secreting β-cells hold great promise for the treatment of diabetes. Using in vitro cell culture, long-term function and viability are enhanced when β-cells are cultured with extracellular matrix (ECM) proteins. Here, our goal is to engineer a favorable environment within implant devices, where ECM proteins are stably immobilized on polymer scaffolds, to better support β-cell adhesion. Four different polymer candidates (low-density polyethylene (LDPE), polystyrene (PS), polyethersulfone (PES) and polysulfone (PSU)) were treated using plasma immersion ion implantation (PIII) to enable the covalent attachment of laminin on their surfaces. Surface characterisation analysis shows the increased hydrophilicity, polar groups and radical density on all polymers after the treatment. Among the four polymers, PIII-treated LDPE has the highest water contact angle and the lowest radical density which correlate well with the non-significant protein binding improvement observed after 2 months of storage. The study found that the radical density created by PIII treatment of aromatic polymers was higher than that created by the treatment of aliphatic polymers. The higher radical density significantly improves laminin attachment to aromatic polymers, making them better substrates for β-cell adhesion.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • polymer
  • photoelectron spectroscopy