Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Frois, António

  • Google
  • 2
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Can a-C:H-Sputtered Coatings Be Extended to Orthodontics?6citations
  • 2021Salivary pH Effect on Orthodontic Appliances: In Vitro Study of the SS/DLC System8citations

Places of action

Chart of shared publication
Aleixo, Ana Sofia
1 / 1 shared
Louro, Cristina
2 / 3 shared
Evaristo, Manuel
2 / 6 shared
Santos, Ana
2 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Aleixo, Ana Sofia
  • Louro, Cristina
  • Evaristo, Manuel
  • Santos, Ana
OrganizationsLocationPeople

article

Can a-C:H-Sputtered Coatings Be Extended to Orthodontics?

  • Aleixo, Ana Sofia
  • Louro, Cristina
  • Frois, António
  • Evaristo, Manuel
  • Santos, Ana
Abstract

<jats:p>Hydrogenated amorphous carbon (a-C:H) coatings are attractive materials for protecting metallic surfaces in extreme biological environments like the human oral cavity, due to the unusual combination of mechanical properties, superior bioinertness, and relative easier and cheaper production. In this work, two a-C:H coatings were deposited on AISI 316L substrates by reactive magnetron sputtering with two CH4 flows to assess if this outstanding system could extend its application range to orthodontics. A 30-day immersion test in Fusayama-Meyer artificial saliva was conducted to mimic an extreme acidic intraoral pH. Extracts were quantified and used to perform in vitro assays with mono- and co-cultures of macrophages and fibroblast to assess cell viability, while mechanical and structural behaviors were studied by nanoindentation and visible Raman. The empirically estimated H contents of ~28 and 40 at.% matched the hard and soft a-C:H coating regimes of 18 and 7 GPa, respectively. After immersion, no important structural/mechanical modifications occurred, regardless of the H content, without corrosion signs, delamination, or coating detachment. However, the adhesion-promoting Cr-based interlayer seems to reduce corrosion resistance via galvanic coupling. The highest biocompatibility was found for a-C:H coatings with the lowest H content. This study indicates that sputtered a-C:H are promising surface materials in orthodontics.</jats:p>

Topics
  • surface
  • amorphous
  • Carbon
  • corrosion
  • reactive
  • nanoindentation
  • biocompatibility