People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Varman, Mahendra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Comparative Studies of Piston Crown Coating with YSZ and Al2O3·SiO2 on Engine out Responses Using Conventional Diesel and Palm Oil Biodieselcitations
- 2021Effect of Thermal Barrier Coating on the Performance and Emissions of Diesel Engine Operated with Conventional Diesel and Palm Oil Biodieselcitations
- 2019Experimental investigation of tribological properties of laser textured tungsten doped diamond like carbon coating under dry sliding conditions at various loads.
- 2019Experimental investigation of tribological properties of laser textured tungsten doped diamond like carbon coating under dry sliding conditions at various loads.citations
Places of action
Organizations | Location | People |
---|
article
Effect of Thermal Barrier Coating on the Performance and Emissions of Diesel Engine Operated with Conventional Diesel and Palm Oil Biodiesel
Abstract
<jats:p>In this study, the performance and emission of a thermal barrier coating (TBC) engine which applied palm oil biodiesel and diesel as a fuel were evaluated. TBC was prepared by using a series of mixture consisting different blend ratio of yttria stabilized zirconia (Y2O3·ZrO2) and aluminum oxide-silicon oxide (Al2O3·SiO2) via plasma spray coating technique. The experimental results showed that mixture of TBC with 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 had an excellent nitrogen oxide (NO), carbon monoxide (CO), carbon dioxide (CO2), and unburned hydrocarbon (HC) reductions compared to other blend-coated pistons. The finding also indicated that coating mixture 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 had the highest brake thermal efficiency (BTE) and lowest of brake specific fuel consumption (BSFC) compared to all mixture coating. Reductions of HC and CO emissions were also recorded for 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 and 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 coatings. These encouraging findings had further proven the significance of TBC in enhancing the engine performance and emission reductions operated with different types of fuel.</jats:p>