Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Budnicki, Aleksander

  • Google
  • 1
  • 3
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Corrosion Resistance of AISI 304 Stainless Steel Modified Both Femto- and Nanosecond Lasers16citations

Places of action

Chart of shared publication
Mroczkowska, Katarzyna
1 / 1 shared
Antończak, Arkadiusz
1 / 3 shared
Dzienny, Paulina
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Mroczkowska, Katarzyna
  • Antończak, Arkadiusz
  • Dzienny, Paulina
OrganizationsLocationPeople

article

Corrosion Resistance of AISI 304 Stainless Steel Modified Both Femto- and Nanosecond Lasers

  • Mroczkowska, Katarzyna
  • Antończak, Arkadiusz
  • Budnicki, Aleksander
  • Dzienny, Paulina
Abstract

<jats:p>This article is aimed to study the effect of laser treatment of AISI 304 stainless steel on the corrosion resistance and chemical composition of the surface layer. The samples were irradiated using two quite different laser sources: IPG Yb:glass fibre laser (τ = 230 ns, λ = 1062 nm) and Trumpf TruMicro Series 2020 fiber laser (τ = 260 fs–20 ps, λ = 1030 nm) that is, in both the long and ultra-short pulse duration regime. It allowed the observation of completely different microstructures and chemical composition of the surface layer. In this study, the morphology of the samples was accessed using both Keyence digital microscope and Olympus Lext 5000 profilometer. The corrosion resistance was examined in 3% NaCl solution using both potentiodynamic measurement and Electrochemical Impedance Spectroscopy. In order to examine the change in chemical composition of the surface layer, the X-ray photoelectron spectroscopy study was performed. Results show that the use of a long laser pulse contributes to the formation of a thin, tight, rich in chromium passive layer, which significantly improves corrosion resistance in comparison to the reference sample. Different behaviour is observed after irradiation with an ultra-short pulse duration laser.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • stainless steel
  • corrosion
  • chromium
  • x-ray photoelectron spectroscopy
  • glass
  • glass
  • chemical composition