Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Niño, Maria Elizabeth Berrio

  • Google
  • 1
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021A Dual Active-Passive Coating with Intumescent and Fire-Retardant Properties Based on High Molecular Weight Tannins9citations

Places of action

Chart of shared publication
Díaz-Gómez, Andrés
1 / 2 shared
Fernández, Katherina
1 / 3 shared
Solis-Pomar, Francisco
1 / 1 shared
Rojas, David
1 / 4 shared
Ramírez, Jesús
1 / 2 shared
Pérez-Tijerina, Eduardo
1 / 1 shared
Melendrez, Manuel Francisco
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Díaz-Gómez, Andrés
  • Fernández, Katherina
  • Solis-Pomar, Francisco
  • Rojas, David
  • Ramírez, Jesús
  • Pérez-Tijerina, Eduardo
  • Melendrez, Manuel Francisco
OrganizationsLocationPeople

article

A Dual Active-Passive Coating with Intumescent and Fire-Retardant Properties Based on High Molecular Weight Tannins

  • Díaz-Gómez, Andrés
  • Fernández, Katherina
  • Solis-Pomar, Francisco
  • Rojas, David
  • Ramírez, Jesús
  • Pérez-Tijerina, Eduardo
  • Melendrez, Manuel Francisco
  • Niño, Maria Elizabeth Berrio
Abstract

<jats:p>In this study, the tannins extracted from the Pinus radiata bark were used to develop an active–passive dual paint scheme with intumescent (IN) and fire-resistant (FR) behaviors. The properties of the coating were observed to depend on the concentration of high-molecular-weight tannins (H-MWT) incorporated into the formulation. At high concentrations (13% w/w), the coating exhibits fire-retardant properties due to the generation of a carbonaceous layer; however, at low concentrations (2.5% w/w), it generates an intumescent effect due to the formation of a carbonaceous foam layer. The dual IN–FR scheme was evaluated against fire by flame advance tests, carbonization index, mass loss, and intumescent effect, and was also compared to a commercial coating. The dual scheme presented good mechanical properties with a pull-off adhesion value of 0.76 MPa and an abrasion index of 54.7% at 1000 cycles, when using a coating with a high solid content (&gt;60%) and the same thickness as those of the commercial coatings. The results of the fire resistance test indicate that the dual scheme generates a protective effect for wood and metal, with an excellent performance that is comparable to that of a commercial intumescent coating.</jats:p>

Topics
  • impedance spectroscopy
  • wood
  • molecular weight