Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Macedo, Maria Filomena

  • Google
  • 1
  • 3
  • 9

Universidade Nova de Lisboa

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Testing the feasibility of titanium dioxide sol-gel coatings on portuguese glazed tiles to prevent biological colonization9citations

Places of action

Chart of shared publication
Miller, Ana Zélia
1 / 1 shared
Veiga, João Pedro
1 / 12 shared
Coutinho, Ml
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Miller, Ana Zélia
  • Veiga, João Pedro
  • Coutinho, Ml
OrganizationsLocationPeople

article

Testing the feasibility of titanium dioxide sol-gel coatings on portuguese glazed tiles to prevent biological colonization

  • Miller, Ana Zélia
  • Veiga, João Pedro
  • Macedo, Maria Filomena
  • Coutinho, Ml
Abstract

<p>Historical glazed wall tiles are a unique vehicle of artistic expression that can be found outdoors, integrating the buildings of many countries, therefore they are often subjected to biodeterioration. In this work, the applicability of protective coatings on glazed tiles to prevent biological colonization was evaluated. Thin films of titanium dioxide (TiO<sub>2</sub>) obtained by sol-gel were applied on glazed tiles to appraise its anti-biofouling properties and to evaluate their suitability for cultural heritage application. The TiO<sub>2</sub> coating was tested on four different Portuguese glazed tiles and a modern tile. The chemical and mineralogical characterization of the glaze and ceramic body of the tiles was examined by wavelength dispersive X-ray fluorescence spectroscopy (WDXRF) and X-ray diffraction (XRD). The produced TiO<sub>2</sub> coating was chemically and morphologically characterized by micro Raman spectroscopy (µ-Raman) and field emission scanning electron microscopy (FESEM). The anti-biofouling properties of the TiO<sub>2</sub> treatment were evaluated by inoculating the fungus Cladosporium sp. on the glazed tiles. Potential chromatic and mineralogical alterations induced by the treatment were assessed by color measurements and XRD. The TiO<sub>2</sub> coating did not prevent fungal growth and caused aesthetical alterations on the glazed tiles. A critical analysis evidenced that the tested coating was not suitable for cultural heritage application and highlighted the challenges of developing protective coatings for glazed tiles.</p>

Topics
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • titanium
  • ceramic
  • Raman spectroscopy
  • fluorescence spectroscopy
  • X-ray fluorescence spectroscopy