Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baldea, Ioana

  • Google
  • 5
  • 7
  • 176

Iuliu Hațieganu University of Medicine and Pharmacy

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020Evaluation of Surface Characteristics and Cytotoxicity of Dental Composites1citations
  • 2019The Influence of Graphene in Improvement of Physico-Mechanical Properties in PMMA Denture Base Resins64citations
  • 2019New Pre-reacted Glass Containing Dental Composites (giomers) with Improved Fluoride Release and Biocompatibility31citations
  • 2016Evaluation of the Biocompatibility of New Fiber-Reinforced Composite Materials for Craniofacial Bone Reconstruction.17citations
  • 2015Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells.63citations

Places of action

Chart of shared publication
Rotaru, H.
1 / 3 shared
Prodan, Doina
1 / 6 shared
Moldovan, Madalina Lazar
1 / 2 shared
Ab, Boşca
1 / 1 shared
Rs, Câmpian
1 / 2 shared
Prejmerean, C.
1 / 1 shared
Cp, Berce
1 / 1 shared
Chart of publication period
2020
2019
2016
2015

Co-Authors (by relevance)

  • Rotaru, H.
  • Prodan, Doina
  • Moldovan, Madalina Lazar
  • Ab, Boşca
  • Rs, Câmpian
  • Prejmerean, C.
  • Cp, Berce
OrganizationsLocationPeople

article

Evaluation of Surface Characteristics and Cytotoxicity of Dental Composites

  • Baldea, Ioana
Abstract

<jats:p>The purpose of this study was to evaluate the surface and in vitro cytotoxicity on human dysplastic oral keratinocytes (DOK) of four commercial resins-based dental composites commonly used in prosthodontics dental therapies: two indirect composites for crown and bridges—SR Adoro (IvoclarVivadent GmbH) and Solidex (Shofu Dental GmbH); and two dual-curing luting resin cements—RelyxUnicem (3M ESPE Dental Products) and Variolink Esthetic DC (IvoclarVivadentGmbH). A complex assessment of surface characteristics of the four materials was conducted before and after the exposure to artificial saliva through various analyses, such as Scanning Electron Microscopy, Atomic Force Microscopy and Cross Polarized Light Microscopy (PLM). The results showed that DOK viability was not severely affected by exposure to any of these materials; however, Variolink expressed higher values but still above the toxicity level of the rest of the composites. The analysis of the surface structure between initial and artificial saliva exposed specimens returned a compact aspect in both categories and although Variolink and Relyx were subjected to increased roughness after saliva exposure, no damage of the internal compactness was recorded, demonstrating a fair behavior of the luting cements in contact with the saliva.</jats:p>

Topics
  • surface
  • scanning electron microscopy
  • atomic force microscopy
  • composite
  • cement
  • resin
  • toxicity
  • curing
  • Polarized light microscopy