Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chang-Jiu, Li

  • Google
  • 1
  • 4
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Enhanced Tribological Properties of LA43M Magnesium Alloy by Ni60 Coating via Ultra-High-Speed Laser Cladding26citations

Places of action

Chart of shared publication
Asghar, Osama
1 / 1 shared
Li-Yan, Lou
1 / 1 shared
Yasir, Muhammad
1 / 18 shared
Cheng-Xin, Li
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Asghar, Osama
  • Li-Yan, Lou
  • Yasir, Muhammad
  • Cheng-Xin, Li
OrganizationsLocationPeople

article

Enhanced Tribological Properties of LA43M Magnesium Alloy by Ni60 Coating via Ultra-High-Speed Laser Cladding

  • Asghar, Osama
  • Li-Yan, Lou
  • Yasir, Muhammad
  • Cheng-Xin, Li
  • Chang-Jiu, Li
Abstract

<jats:p>Laser modification techniques have been widely adopted in the field of surface engineering. Among these modified techniques, ultra-high-speed laser cladding is trending most nowadays to fabricate wear-resistant surfaces. The main purpose of this research is to provide a detailed insight of ultra-high-speed laser cladding of hard Ni60 alloy on LA43M magnesium alloy to enhance its surface mechanical properties. Multiple processing parameters were investigated to obtain the optimal result. The synthesized coating was studied microstructurally by field emission scanning electron microscopy (FESEM) equipped with an energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The microhardness and wear resistance of the Ni60 coating were analyzed under Vickers hardness and pin on disc tribometer respectively. The obtained results show that the dense Ni60 coating was fabricated with a thickness of 300 μm. No cracks and porosities were detected in cross-sectional morphology. The Ni60 coating was mainly composed of γ-Ni and hard phases (chromium carbides and borides). The average microhardness of coating was recorded as 948 HV0.3, which is approximately eight times higher than that of the substrate. Meanwhile, the Ni60 coating exhibited better wear resistance than the substrate, which was validated upon the wear loss and wear mechanism. The wear loss recorded for the substrate was 6.5 times higher than that of the coating. The main wear mechanism in the Ni60 coating was adhesive while the substrate showed abrasive characteristics.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • chromium
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Magnesium
  • magnesium alloy
  • Magnesium
  • crack
  • wear resistance
  • carbide
  • hardness
  • Energy-dispersive X-ray spectroscopy
  • boride