People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ge, Yanling
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2025Microscopic characterisation of brittle fracture initiation in irradiated and thermally aged low-alloy steel welds of a decommissioned reactor pressure vesselcitations
- 2023Effect of thermal aging on microstructure and carbides of SA508/Alloy 52 dissimilar metal weldcitations
- 2023Heterogeneous Hierarchical Self-Assembly Forming Crystalline Nanocellulose–CaCO3 Hybrid Nanoparticle Biocompositescitations
- 2023Study of fusion boundary microstructure and local mismatch of SA508/alloy 52 dissimilar metal weld with butteringcitations
- 2022Fracture in the Ductile-To-Brittle Transition Region of A Narrow-Gap Alloy 52 and Alloy 52 Dissimilar Metal Weld With Butteringcitations
- 2022Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfacescitations
- 2022Effect Of Thermal Aging On The Microstructure And Mechanical Properties Of High-Ni And Ni-Base Alloys
- 2022Micromechanical modelling of additively manufactured high entropy alloys to establish structure-properties-performance workflow
- 2022Microstructure and Properties of Additively Manufactured AlCoCr0.75Cu0.5FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decompositioncitations
- 2022Mechanical properties of pulsed electric current sintered CrFeNiMn equiatomic alloycitations
- 2022Nanotwinned (inter)martensite transformation interfaces in Ni50Mn25Ga20Fe5 magnetic shape memory single crystal foilcitations
- 2021Hydrogen effects in equiatomic CrFeNiMn alloy fabricated by laser powder bed fusioncitations
- 2021Silica-silicon composites for near-infrared reflectioncitations
- 2021Mechanical and tribological properties of WO2.9 and ZrO2 + WO2.9 composites studied by nanoindentation and reciprocating wear testscitations
- 2021Functionalized Nanocellulose/Multiwalled Carbon Nanotube Composites for Electrochemical Applicationscitations
- 2021Silica-silicon composites for near-infrared reflection: A comprehensive computational and experimental studycitations
- 2020Analysis of the Magneto-Mechanical Anisotropy of Steel Sheets in Electrical Applicationscitations
- 2020Cold gas spraying of a high-entropy CrFeNiMn equiatomic alloycitations
- 2017Nanosilver-Silica Compositecitations
- 2017Nanosilver-Silica Composite : Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressingscitations
- 2017Nanosilver–silica composite: Prolonged antibacterial effects and bacterial interaction mechanisms for wound dressingscitations
- 2016Nanodiamond embedded ta-C composite film by pulsed filtered vacuum arc deposition from a single targetcitations
- 2015Neutron Diffraction Study of the Martensitic Transformation and Chemical Order in Heusler Alloy Ni1.91Mn1.29Ga0.8
- 2015Characterization of Gas Atomized Ni-Mn-Ga powderscitations
- 2014Mechanical and thermal properties of pulsed electric current sintered (PECS) Cu-diamond compactscitations
Places of action
Organizations | Location | People |
---|
article
Cold gas spraying of a high-entropy CrFeNiMn equiatomic alloy
Abstract
Cold gas spraying was used to make a coating from an equiatomic CrFeNiMn high-entropy alloy. This four-component alloy was chosen because it is Co-free, thus allowing application in nuclear industries as a possible replacement of currently used stainless steel coatings. The feedstock material was gas atomized powder with a particle size distribution from 20 to 45 μm. A number of parameters were tested, such as the powder feed rate and gas feed pressure, in order to obtain as dense a coating as possible with nitrogen as the process gas. Spraying was performed using a gas preheating temperature of 1000 °C, gas feed pressure ranging from 50 to 60 bar, and two powder feeding rates. The coating thicknesses ranging from 230 to 490 m and porosities ranging from 3% to 10% were obtained depending on the powder feed rate and gas feed pressure. The hardness of the cross-section of the coating was usually lower than that of the surface. The highest coating hardness obtained was above 300 HV0.3 for both the surface and the cross-section. The as-atomized powder consisted of a face-centered cubic (FCC) phase with a minute amount of body-centered cubic (BCC) phase, which was no longer detectable in the coatings. The microstructure of the coating was highly stressed due to the high degree of deformation occurring in cold gas spraying. The deformation leads to strain hardening and induces a pronounced texture in the coating. The 111 planes tend to align along the coating surface, with deformation and texturing concentrating mainly on particle boundaries. A high-entropy alloy (HEA) coating was successfully sprayed for the first time using nitrogen as a process gas. The coating has the potential to replace stainless steel coatings in nuclear industry applications. ; Peer reviewed