Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Goto, Keiichi

  • Google
  • 5
  • 6
  • 83

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2019Benefit of damping in structural concrete for railway structures and track componentscitations
  • 2019Nonlinear finite element analysis for structural capacity of railway prestressed concrete sleepers with rail seat abrasion37citations
  • 2018Impact responses of railway concrete sleepers with surface abrasionscitations
  • 2018Vulnerability of structural concrete to extreme climate variances46citations
  • 2018Damping effects on vibrations of railway prestressed concrete sleeperscitations

Places of action

Chart of shared publication
You, Ruilin
2 / 4 shared
Ngamkhanong, Chayut
1 / 12 shared
Freimanis, Andris
1 / 6 shared
Najih, Yanuar Muhammad
1 / 1 shared
Wu, Lei
1 / 3 shared
Rachid, Ayoub
1 / 1 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • You, Ruilin
  • Ngamkhanong, Chayut
  • Freimanis, Andris
  • Najih, Yanuar Muhammad
  • Wu, Lei
  • Rachid, Ayoub
OrganizationsLocationPeople

article

Vulnerability of structural concrete to extreme climate variances

  • Najih, Yanuar Muhammad
  • Goto, Keiichi
  • Wu, Lei
Abstract

For modern infrastructures, structural concrete has been widely adopted for various components and structures such as railway stations, platforms, walkways, railway bridges, tunnelling, concrete sleepers, concrete foundation of overhead wiring structures, etc. These infrastructures are subject to various changes of time, operation, and environment. Environmental conditions are a considerably influential factor to life cycle and durability of concrete structures. This study aims at identifying the influence of climate change on the performance and durability of concrete structures using statistical regression analysis of a number of pertinent experimental and field data. The study into the influence of elevated temperature on compressive strength and splitting tensile strength also has been carried out using experimental data on the basis of environmental temperature and relative humidity, as well as CO2 concentration to the concrete carbonation and steel corrosion rates. The results indicate that environmental temperature, CO2 concentration, and a certain range of relative humidity play an important role in the concrete carbonation rates. Temperature and relative humidity affect the rate of steel corrosion as well. In addition, it is found that there exists a nearly direct correlation between the environmental temperature and the concrete carbonation rates, as well as the corrosion rate of steel embedded in concrete from 25 °C to 60 °C, and a nearly inverse proportion between the environmental relative humidity and the concrete carbonization from 48.75% to 105%. Indeed, the results exhibit that even in extreme natural high temperature, the capacity of compressive strength and splitting tensile strength is not affected significantly.

Topics
  • impedance spectroscopy
  • corrosion
  • strength
  • steel
  • tensile strength
  • durability