Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Del Bosque, Antonio

  • Google
  • 2
  • 3
  • 21

Catholic University of Ávila

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Multifunctional Carbon Nanotubes-Reinforced Surlyn Nanocomposites: A Study of Strain-Sensing and Self-Healing Capabilities6citations
  • 2021Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept15citations

Places of action

Chart of shared publication
Calderón-Villajos, Rocío
1 / 2 shared
Sanchez, M.
1 / 6 shared
Ureña Fernandez, Alejandro
1 / 3 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Calderón-Villajos, Rocío
  • Sanchez, M.
  • Ureña Fernandez, Alejandro
OrganizationsLocationPeople

article

Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept

  • Del Bosque, Antonio
Abstract

<jats:p>The electromechanical capabilities of carbon nanotube (CNT) doped poly(ethylene glycol) diglycidyl ether (PEGDGE) have been explored. In this regard, the effect of both CNT content and curing conditions were analyzed. The electrical conductivity increased both with CNT content and curing temperature due to the lower gel time that leads to a lower reaggregation during curing. More specifically, the percolation threshold at 160 and 180 °C curing temperatures is below 0.01 wt.%, and this limit increases up to 0.1 wt.% at 140 °C for an 8 h curing cycle. Moreover, the strain monitoring capabilities were investigated, and the effect of contact resistance was also analyzed. The electrical contacts made with silver ink led to higher values of gauge factor (GF) but presented some issues at very high strains due to their possible detachment during testing. In every case, GF values were far above conventional metallic gauges with a very significant exponential behavior, especially at low CNT content due to a prevalence of tunneling mechanisms. Finally, a proof of concept of fingers and knee motion monitoring was carried out, showing a high sensitivity for human motion sensing.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • silver
  • nanotube
  • electrical conductivity
  • curing