People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodrigues, Joana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Application of sound waves during the curing of an acrylic resin and its composites based on short carbon fibers and carbon nanofibers
- 2022Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purificationcitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2021The role of Ga and Bi doping on the local structure of transparent zinc oxide thin filmscitations
- 2021The role of Ga and Bi doping on the local structure of transparent zinc oxide thin filmscitations
- 2021Dual Transduction of H2O2 Detection Using ZnO/Laser-Induced Graphene Compositescitations
- 2017Multifunctional Materialscitations
Places of action
Organizations | Location | People |
---|
article
Dual Transduction of H2O2 Detection Using ZnO/Laser-Induced Graphene Composites
Abstract
<jats:p>Zinc oxide (ZnO)/laser-induced graphene (LIG) composites were prepared by mixing ZnO, grown by laser-assisted flow deposition, with LIG produced by laser irradiation of a polyimide, both in ambient conditions. Different ZnO:LIG ratios were used to infer the effect of this combination on the overall composite behavior. The optical properties, assessed by photoluminescence (PL), showed an intensity increase of the excitonic-related recombination with increasing LIG amounts, along with a reduction in the visible emission band. Charge-transfer processes between the two materials are proposed to justify these variations. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy evidenced increased electron transfer kinetics and an electrochemically active area with the amount of LIG incorporated in the composites. As the composites were designed to be used as transducer platforms in biosensing devices, their ability to detect and quantify hydrogen peroxide (H2O2) was assessed by both PL and CV analysis. The results demonstrated that both methods can be employed for sensing, displaying slightly distinct operation ranges that allow extending the detection range by combining both transduction approaches. Moreover, limits of detection as low as 0.11 mM were calculated in a tested concentration range from 0.8 to 32.7 mM, in line with the values required for their potential application in biosensors.</jats:p>