Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lontio Fomekong, Roussin

  • Google
  • 3
  • 8
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022High-temperature NO sensing performance of WO3 deposited by spray coating.8citations
  • 2019Influence of Humidity on NO2-Sensing and Selectivity of Spray-CVD Grown ZnO Thin Film above 400 °C42citations
  • 2015Coprecipitation of nickel zinc malonate: A facile and reproducible synthesis route for Ni1-xZnxO nanoparticles and Ni1-xZnxO/ZnO nanocomposites via pyrolysis19citations

Places of action

Chart of shared publication
Saruhan, Bilge
1 / 2 shared
Debliquy, Marc
1 / 17 shared
Lahem, Driss
1 / 11 shared
Kenfack Tsobnang, Patrice
1 / 3 shared
Hermans, Sophie
1 / 21 shared
Magnin, Delphine
1 / 11 shared
Delcorte, Arnaud
1 / 49 shared
Lambi Ngolui, John
1 / 2 shared
Chart of publication period
2022
2019
2015

Co-Authors (by relevance)

  • Saruhan, Bilge
  • Debliquy, Marc
  • Lahem, Driss
  • Kenfack Tsobnang, Patrice
  • Hermans, Sophie
  • Magnin, Delphine
  • Delcorte, Arnaud
  • Lambi Ngolui, John
OrganizationsLocationPeople

article

Influence of Humidity on NO2-Sensing and Selectivity of Spray-CVD Grown ZnO Thin Film above 400 °C

  • Lontio Fomekong, Roussin
Abstract

<jats:p>Thin films are being used more and more in gas sensing applications, relying on their high surface area to volume ratio. In this study, ZnO thin film was produced through a thermal aerosol spraying and chemical vapor deposition (spray-CVD) process at 500 °C using zinc acetate as a precursor. The phase identification and the morphologies of the film were investigated by XRD and SEM, respectively. Gas-sensing properties of the ZnO thin film were evaluated toward NO2, CO, and NO at a moderate temperature range (400–500 °C) in dry and humid air (relative humidity = 2.5, 5, 7.5, and 10% RH). The obtained results show good sensor signal for both NO2 (R/R0 = 94%) and CO (92%) and poor sensor signal to NO (52%) at an optimum temperature of 450 °C in dry air. The response and recovery times decrease with the increase of NO2 concentration. In the presence of humidity (10% of RH), the sensor is more than twice as sensitive to NO2 (70%) as CO (29%), and accordingly, exhibits good selectivity toward NO2. As the amount of humidity increases from 2.5 to 10% RH, the selectivity ratio of ZnO thin film to NO2 against CO increases from 1 to 2.4. It was also observed that the response and the recovery rates decrease with the increase of relative humidity. The significant enhancement of the selectivity of ZnO thin film toward NO2 in the presence of humidity was attributed to the strong affinity of OH species with NO2.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • zinc
  • chemical vapor deposition