People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dejous, Corinne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Selective Outdoor Humidity Monitoring Using Epoxybutane Polyethyleneimine in a Flexible Microwave Sensorcitations
- 2022Chemical sensor based on a novel capacitive microwave flexible transducer with polymer nanocomposite-carbon nanotube sensitive filmcitations
- 2019CNT-Based Inkjet-Printed RF Gas Sensor: Modification of Substrate Properties during the Fabrication Processcitations
- 2018VOCs monitoring using differential microwave capacitive resonant transducer and conductive PEDOT:PSS-MWCNTs nanocomposite film for environmental applicationscitations
- 2018Chemical sensor based on a novel capacitive microwave flexible transducer with polymer nanocomposite-carbon nanotube sensitive filmcitations
- 2017VOCs monitoring using microwave capacitive resonator and conductive polymer – MWCNTs nanocomposites for environmental applications
- 2017Chemical gas sensor based on a novel capacitive microwave flexible transducer and composite polymer carbon nanomaterials ; Chemical gas sensor based on a novel capacitive microwave flexible transducer and composite carbon nanomaterialscitations
- 2017Chemical sensor based on a novel capacitive microwave flexible transducer with polymer nanocomposite-carbon nanotube sensitive filmcitations
- 2017SH-SAW VOCs sensor based on ink-jet printed MWNTs / polymer nanocomposite films
- 2017Invited talk: CArbon and Microwave-based Ultrasensitive gas Sensors (CAMUS)
- 2017Chemical gas sensor based on a novel capacitive microwave flexible transducer and composite polymer carbon nanomaterials
- 2017Chemical Gas Sensor Based on a Flexible Capacitive Microwave Transducer Associated with a Sensitive Carbon Composite Polymer Filmcitations
- 2014Love Wave Characterization of Mesoporous Titania Films
- 2012Optimization of physicochemical parameters of a multilayered polyelectrolyte film deposition with Love wave and AFM for bacteria based detection of heavy metals
- 2010High frequency microrheological measurements of PDMS fluids using SAW microfluidic systemcitations
- 2009Escherichia Coli functionalized magnetic nanobeads as an ultrasensitive biosensor for heavy metalscitations
Places of action
Organizations | Location | People |
---|
article
Selective Outdoor Humidity Monitoring Using Epoxybutane Polyethyleneimine in a Flexible Microwave Sensor
Abstract
The rise of gas-sensing applications and markets has led to microwave sensors associated to polymer-based sensitive materials gaining a lot of attention, as they offer the possibility to target a large variety of gases (as polymers can be easily functionalised) at ultra-low power and wirelessly (which is a major concern in the Internet of Things). A two-channel microstrip sensor with one resonator coated with 1,2 epoxybutane-functionalised poly(ethyleneimine) (EB-PEI) and the other left bare was designed and fabricated for humidity sensing. The sensor, characterised under controlled laboratory conditions, showed exponential response to RH between 0 and 100%, which is approximated to −1.88 MHz/RH% (−0.03 dB/RH%) and −8.24 MHz/RH% (−0.171 dB/RH%) in the RH ranges of 30–80% and 80–100%, respectively. This is the first reported use of EB-PEI for humidity sensing, and performances, especially at high humidity level (RH > 80%), as compared with transducer working frequencies, are better than the state of the art. When further tested in real outdoor conditions, the sensor shows satisfying performances, with 4.2 %RH mean absolute error. Most importantly, we demonstrate that the sensor is selective to relative humidity alone, irrespective of the other environmental variables acquired during the campaign (O3, NO, NO2, CO, CO2, and Temperature). The sensitivities obtained outdoors in the ranges of 50–70% and 70–100% RH (−0.61 MHz/%RH and −3.68 MHz/%RH, respectively) were close to lab results (−0.95 MHz/%RH and −3.51 MHz/%RH, respectively).