Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alahi, Md Eshrat E.

  • Google
  • 3
  • 7
  • 78

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022A Critical Review of the Use of Graphene-Based Gas Sensors33citations
  • 2021Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activities38citations
  • 2016Highly selective ion imprinted polymer based interdigital sensor for nitrite detection7citations

Places of action

Chart of shared publication
Afsarimanesh, Nasrin
1 / 2 shared
Nag, Anindya
2 / 15 shared
Altinsoy, M. Ercan
1 / 4 shared
Nuthalapati, Suresh
1 / 3 shared
Chakraborthy, Aniket
1 / 1 shared
Burkitt, Lucy
1 / 3 shared
Yu, Pak Lam
1 / 4 shared
Chart of publication period
2022
2021
2016

Co-Authors (by relevance)

  • Afsarimanesh, Nasrin
  • Nag, Anindya
  • Altinsoy, M. Ercan
  • Nuthalapati, Suresh
  • Chakraborthy, Aniket
  • Burkitt, Lucy
  • Yu, Pak Lam
OrganizationsLocationPeople

document

A Critical Review of the Use of Graphene-Based Gas Sensors

  • Afsarimanesh, Nasrin
  • Alahi, Md Eshrat E.
  • Nag, Anindya
  • Altinsoy, M. Ercan
  • Nuthalapati, Suresh
  • Chakraborthy, Aniket
Abstract

<p>The employment of graphene for multifunctional uses has been a cornerstone in sensing technology. Due to its excellent electrochemical properties, graphene has been used in its pure and composite forms to detect target molecules over a wide range of surfaces. The adsorption process on the graphene-based sensors has been studied in terms of the change in resistance and capacitance values for various industrial and environmental applications. This paper highlights the performance of graphene-based sensors for detecting different kinds of domestic and industrial gases. These graphene-based gas sensors have achieved enhanced output in terms of sensitivity and working range due to specific experimental parameters, such as elevated temperature, presence of particular gas-specific layers and integration with specific nanomaterials that assist with the adsorption of gases. The presented research work has been classified based on the physical nature of graphene used in conjugation with other processed materials. The detection of five different types of gases, including carbon dioxide (CO<sub>2</sub>), ammonia (NH<sub>3</sub>), hydrogen sulphide (H<sub>2</sub>S), nitrogen dioxide (NO<sub>2</sub>) and ethanol (C<sub>2</sub>H<sub>5</sub>OH) has been shown in the paper. The challenges of the current graphene-based gas sensors and their possible remedies have also been showcased in the paper.</p>

Topics
  • surface
  • Carbon
  • Nitrogen
  • composite
  • Hydrogen