Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bakranov, Nurlan

  • Google
  • 2
  • 4
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Photocatalytic and Glucose Sensing Properties of ZnO-Based Nanocoating9citations
  • 2021Study of the Photoelectrochemical Properties of 1D ZnO Based Nanocomposites3citations

Places of action

Chart of shared publication
Bakranova, Dina
2 / 2 shared
Seitov, Bekbolat
2 / 3 shared
Kurbanbekov, Sherzod
1 / 2 shared
Abdyldayeva, Nuriya
1 / 1 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Bakranova, Dina
  • Seitov, Bekbolat
  • Kurbanbekov, Sherzod
  • Abdyldayeva, Nuriya
OrganizationsLocationPeople

article

Photocatalytic and Glucose Sensing Properties of ZnO-Based Nanocoating

  • Bakranova, Dina
  • Seitov, Bekbolat
  • Bakranov, Nurlan
Abstract

<jats:p>Here, we report a simple and versatile synthesis of low-dimensional ZnO nanosheet (NS) arrays modified with Fe2O3 (hematite) to assemble photocatalytic coatings and non-enzymatic glucose sensors. Photocatalytic coatings made of widespread elements (zinc and iron) were tested for methylene blue (MB) dye decolorization under ultraviolet and visible (UV-vis) irradiation. A comparative study of unmodified and modified ZnO NS photocatalysts revealed a significant decrease in the dye concentration in 180 min when ZnO/Fe2O3 arrays were used. Size dependence efficiency of the hematite layer deposited onto ZnO is presented. A study of the sensitivity of biosensors made of ZnO nanostructures and ZnO/Fe2O3 nanocomposites for glucose detection showed an improvement in sensitivity with increased Fe2O3 thickness. The structure and morphology of low-dimensional coatings were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). The optical properties of nanoarrays showed a red shift of absorption after modifying ZnO with hematite layers, which holds good promise for expanding photocatalytic activity in the visible region.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • scanning electron microscopy
  • x-ray diffraction
  • zinc
  • iron
  • Energy-dispersive X-ray spectroscopy