Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Djeda, Rodrigue

  • Google
  • 3
  • 2
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Nanomatériaux dendritiques vers l'électronique moléculaire et la médecinecitations
  • 2020Porous Layered Double Hydroxide/TiO2 Photocatalysts for the Photocatalytic Degradation of Orange II10citations
  • 2010Nanomatériaux dendritiques vers l'électronique moléculaire et la médecinecitations

Places of action

Chart of shared publication
Prevot, Vanessa
1 / 16 shared
Mailhot, Gilles
1 / 4 shared
Chart of publication period
2020
2010

Co-Authors (by relevance)

  • Prevot, Vanessa
  • Mailhot, Gilles
OrganizationsLocationPeople

article

Porous Layered Double Hydroxide/TiO2 Photocatalysts for the Photocatalytic Degradation of Orange II

  • Prevot, Vanessa
  • Mailhot, Gilles
  • Djeda, Rodrigue
Abstract

Layered Double Hydroxide (LDH)/TiO2 nanocomposites with photocatalytic properties were synthesized by both impregnation and the direct coprecipitation of LDH matrices using a colloidal suspension of TiO2 nanoparticles. While the two methods led to an efficient TiO2 nanoparticle immobilization, the direct coprecipitation allowed us to tune the amount of immobilized TiO2 within the materials. The LDH/TiO2 nanocomposites obtained were deeply characterized by chemical analysis (ICP-AES), Powder X-ray diffraction (XRD), Fourier Transformed Infra-Red (FTIR), Thermogravimetric analysis (TGA), and High-Resolution Transmission Electron Microscopy (HRTEM). Clearly, the immobilization of TiO2 by direct coprecipitation promoted a modification of the textural properties and a net increase in the surface area. The crystallized TiO2 nanoparticles can be distinctly visualized by HRTEM at the surface of the layered material. Several parameters, such as the nature of the chemical composition of LDH (ZnAl and MgAl), the method of immobilization and the amount of TiO2, were shown to play a crucial role in the physicochemical and photocatalytic properties of the nanocomposites. The photocatalytic efficiency of the different LDH/TiO2 nanocomposites was investigated using the photodegradation of a model pollutant, the Orange II (OII), and was compared to a pure TiO2 colloidal solution. The degradation tests revealed that the nanocomposite obtained from MgAl LDH at a low MgAl LDH/TiO2 ratio was the most efficient for the photodegradation of OII leading to complete mineralization in 48 h.

Topics
  • nanoparticle
  • porous
  • nanocomposite
  • surface
  • layered
  • powder X-ray diffraction
  • chemical composition
  • transmission electron microscopy
  • thermogravimetry
  • titanium
  • atomic emission spectroscopy
  • Auger electron spectroscopy