Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Osendi, Maria Isabel

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020In Situ Graded Ceramic/Reduced Graphene Oxide Composites Manufactured by Spark Plasma Sintering2citations

Places of action

Chart of shared publication
Ramírez, Cristina
1 / 6 shared
Belmonte, Manuel
1 / 11 shared
Miranzo, Pilar
1 / 5 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ramírez, Cristina
  • Belmonte, Manuel
  • Miranzo, Pilar
OrganizationsLocationPeople

article

In Situ Graded Ceramic/Reduced Graphene Oxide Composites Manufactured by Spark Plasma Sintering

  • Ramírez, Cristina
  • Belmonte, Manuel
  • Osendi, Maria Isabel
  • Miranzo, Pilar
Abstract

<jats:p>The present work merges two key strategies for the manufacturing of advanced ceramics, in particular, the development of functionally graded materials (FGMs) and the addition of graphene-based fillers into a ceramic matrix. A silicon nitride/reduced graphene oxide FGM composite is produced, in one step, from a single powder composition using the spark plasma sintering (SPS) technique with an asymmetric setting of the punches and die to create a continuous temperature gradient along the cross section of the powder compact. A deep microstructural and mechanical characterization has been done across the specimen thickness. The FGM composite exhibits bottom-top gradients in both the matrix grain size (150% increase) and α-phase content (89→1%). The FGM bottom surface is 10% harder than the top one and, on the other hand, the latter is 15% tougher. The presence of reduced graphene oxide sheets homogeneously distributed within the ceramic composite reduces the mechanical gradients compared to the monolithic silicon nitride FGM, although allows reaching a maximum long-crack toughness value of 9.4 MPa·m1/2. In addition, these graphene-based fillers turn the insulating ceramics into an electrical conductor material.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • grain size
  • phase
  • crack
  • nitride
  • composite
  • Silicon
  • sintering